Math 30810 Honors Algebra 3 Homework 1

Andrei Jorza
Due Wednesday, September 11

1. Artin 1.9 on page 32 .
2. Artin 1.13 on page 32. [Hint: Do you know a good formula for $\frac{1}{1+x}$ where x is a real number with $|x|<1$?]
3. Suppose A and B are two $n \times n$ matrices with complex entries and X is an indeterminate variable.
(a) If B is invertible show that $\operatorname{det}\left(X I_{n}-A B\right)=\operatorname{det}\left(X I_{n}-B A\right)$ as degree n monic polynomials in X.
(b) Show that $\operatorname{det}\left(X I_{n}-A B\right)=\operatorname{det}\left(X I_{n}-B A\right)$ even if B is not invertible. [Hint: Apply part (a) to $B+a I_{n}$ for a suitable complex number a.]
4. If $A, B \in M_{n \times n}(\mathbb{R})$ we say that $A \sim_{\mathbb{R}} B$ if there exists an invertible matrix $S \in M_{n \times n}(\mathbb{R})$ such that $A=S B S^{-1}$. Similarly, we say $A \sim_{\mathbb{C}} B$ if there exists an invertible matrix $S \in M_{n \times n}(\mathbb{C})$ such that $A=S B S^{-1}$. Show that if $A \sim_{\mathbb{C}} B$ then $A \sim_{\mathbb{R}} B$. [Hint: Use the real and imaginary parts.]
5. Suppose $*$ is an associative composition law on a set S. Show that for any $a_{1}, \ldots, a_{n} \in S$ the value of $a_{1} * a_{2} * \cdots * a_{n}$ does not depend on the order in which we evaluate the compositions.
