Math 30810 Honors Algebra 3
 Homework 2

Andrei Jorza

Due Wed, September 18

Do 5 problems.

1. Recall from class that if S is the set of smooth functions defined on some open neighborhood of 0 in \mathbb{R} then we have an equivalence relation \sim that identifies two functions that agree on some open neighborhood of 0 . Define a natural multiplication function on S / \sim. For this multiplication, determine the identity and the invertible elements.
2. Artin 2.1.1 on page 69 .
3. Artin 2.2.2 on page 69 .
4. Artin 2.2.4 on page 70 .
5. Artin 2.2 .6 on page 70 .
6. Let B be the subset of $\mathrm{GL}_{n}(\mathbb{R})$ consisting of upper-triangular matrices. Show that B is a subgroup of $\mathrm{GL}_{n}(\mathbb{R})$.
7. Let T be the subset of $\mathrm{GL}_{n}(\mathbb{R})$ consisting of diagonal matrices. Show that T is a subgroup of $\mathrm{GL}_{n}(\mathbb{R})$.
8. Show that the set of matrices

$$
H=\left\{\left.\left(\begin{array}{ccccccc}
1 & x_{1} & x_{2} & \ldots & x_{n-1} & x_{n} & z \\
0 & 1 & 0 & 0 & \ldots & 0 & y_{1} \\
0 & 0 & 1 & 0 & \ldots & 0 & y_{2} \\
& & & \ddots & & & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 & y_{n} \\
0 & 0 & 0 & \ldots & 0 & 0 & 1
\end{array}\right) \right\rvert\, x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z \in \mathbb{R}\right\}
$$

forms a subgroup of $\mathrm{GL}_{n+2}(\mathbb{R})$. It is called the Heisenberg group.
9. For a matrix $A \in M_{n \times n}(\mathbb{R})$, let A^{t} be the transpose matrix, so that the $i j$-entry of A^{t} is the $j i$ entry of A. Prove that if $A \in \mathrm{GL}_{n}(\mathbb{R})$, then $\left(A^{-1}\right)^{t}=\left(A^{t}\right)^{-1}$. [Hint: recall that for matrices A and B in $\left.M_{n \times n}(\mathbb{R}),(A B)^{t}=B^{t} A^{t}.\right]$

