Math 30810 Honors Algebra 3 Homework 3

Andrei Jorza

Due Wednesday, September 25

Do 5 questions.

1. Artin 2.4.3
2. Artin 2.4.7
3. Artin 2.6.2
4. Let G be a group with subgroups H and K. Show that $H \cup K$ is a group if and only if one of H and K contains the other.
5. Show that every cyclic group is abelian.
6. Prove that every subgroup of a cyclic group is cyclic.
7. Let G be a group and H a subgroup. Show that the function $f: G \rightarrow G$ defined by $f(x)=x^{-1}$ gives a bijection between G / H and $H \backslash G$.
8. For a matrix $A \in M_{n \times n}(\mathbb{C})$ define $e^{A}=I_{n}+A+A^{2} / 2!+A^{3} / 3!+\cdots$. You may assume that this expression always converges to a matrix $e^{A} \in M_{n \times n}(\mathbb{C})$. If $S \in \mathrm{GL}_{n}(\mathbb{C})$ show that $e^{S A S^{-1}}=S e^{A} S^{-1}$.
9. In the context of the previous exercise show that if A is upper triangular with a_{1}, \ldots, a_{n} on the diagonal then e^{A} is upper triangular with $e^{a_{1}}, \ldots, e^{a_{n}}$ on the diagonal and conclude that $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{Tr}(A)}$. As an optional exercise show that for any matrix A, $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{Tr}(A)}$ and deduce that e^{A} is always invertible. [Hint: You may use the following standard fact from linear algebra, that for every matrix A you can find an invertible matrix S such that $S A S^{-1}$ is upper triangular.]
