Math 30810 Honors Algebra 3 Homework 4

Andrei Jorza

Due Wednesday, October 2

Do 5.

- 1. Artin 2.5.5
- 2. Artin 2.6.7
- 3. Artin 2.6.9. Here if (G, \cdot_G) is a group then the "opposite" group is defined to be $(G^{\circ}, \cdot_{G^{\circ}})$ where the elements are the same $G^{\circ} = G$ but the multiplication is opposite: $g \cdot_{G^{\circ}} h = h \cdot_G g$.
- 4. Artin 2.8.4.
- 5. Artin 2.11.4.
- 6. Show that every finite subgroup of \mathbb{C}^{\times} is of the form $\mu_n = \{z \in \mathbb{C} \mid z^n = 1\}$ for some $n \ge 1$.
- 7. Show that if G is a group of order 4 then either it is cyclic or it is isomorphic to the Klein 4-group V.
- 8. (This is a useful problem, in the textbook it's 2.5.6) For $1 \le i, j \le n$ consider the matrix $E_{ij} \in M_{n \times n}(\mathbb{C})$ with 1 in position ij and 0s everywhere else.
 - (a) For $i \neq j$ show that $I_n + E_{ij} \in \mathrm{GL}_n(\mathbb{C})$.
 - (b) For a general matrix $X \in \operatorname{GL}_n(\mathbb{C})$ compute XE_{ij} and $E_{ij}X$ and show that the only invertible matrices that commute with every other invertible matrix are the scalar ones.