Math 30810 Honors Algebra 3 Homework 4

Andrei Jorza
Due Wednesday, October 2

Do 5.

1. Artin 2.5 .5
2. Artin 2.6.7
3. Artin 2.6.9. Here if $\left(G, \cdot{ }_{G}\right)$ is a group then the "opposite" group is defined to be $\left(G^{\circ}, \cdot G^{\circ}\right)$ where the elements are the same $G^{\circ}=G$ but the multiplication is opposite: $g \cdot G^{\circ} h=h \cdot{ }_{G} g$.
4. Artin 2.8.4.
5. Artin 2.11.4.
6. Show that every finite subgroup of \mathbb{C}^{\times}is of the form $\mu_{n}=\left\{z \in \mathbb{C} \mid z^{n}=1\right\}$ for some $n \geq 1$.
7. Show that if G is a group of order 4 then either it is cyclic or it is isomorphic to the Klein 4 -group V.
8. (This is a useful problem, in the textbook it's 2.5 .6) For $1 \leq i, j \leq n$ consider the matrix $E_{i j} \in M_{n \times n}(\mathbb{C})$ with 1 in position $i j$ and 0 s everywhere else.
(a) For $i \neq j$ show that $I_{n}+E_{i j} \in \mathrm{GL}_{n}(\mathbb{C})$.
(b) For a general matrix $X \in \mathrm{GL}_{n}(\mathbb{C})$ compute $X E_{i j}$ and $E_{i j} X$ and show that the only invertible matrices that commute with every other invertible matrix are the scalar ones.
