Math 30810 Honors Algebra 3 Homework 6

Andrei Jorza
Due Wednesday, October 16

Do 5.

1. Explicit Chinese Remainder Theorem.
(a) Let m and n be coprime integers and let u and v be integers such that $m u+n v=1$ (from Bézout's relation). Show that the system of equations

$$
\begin{cases}x \equiv a & (\bmod m) \\ x \equiv b & (\bmod n)\end{cases}
$$

has the unique solution $x \equiv a n v+b m u(\bmod m n)$.
(b) Compute

$$
12^{34^{56^{78}}}(\bmod 90)
$$

[Hint: Use the Chinese Remainder Theorem.] (A bit on notation: the exponent of 56 is 78 , the exponent of 34 is 56^{78}, the exponent of 12 is $34^{56^{78}}$. In particular, this is $\operatorname{NOT}\left(\left(12^{34}\right)^{56}\right)^{78}$.)
2. Artin 2.9.5 on page 73 .
3. Let p be a prime integer. Show that $(p-1)!\equiv-1(\bmod p)$. [Hint: There are two ways to do this. Either (a) decompose the polynomial $X^{p-1}-1 \bmod p$ into linear factors or (b) interpret $(p-1)$! as a product of elements in $(\mathbb{Z} / p \mathbb{Z})^{\times}$.]
4. Artin 2.12 .1 on page 74 .
5. Artin 2.12 .2 on page 75 .
6. Let p be an odd prime and $a \in \mathbb{Z}$ a primitive root $\bmod p$.
(a) Show that $a^{p^{n-1}}(p+1)$ is a primitive root $\bmod p^{n}$.
(b) If a is also a primitive root $\bmod p^{2}$ show that it is a primitive root $\bmod p^{n}$ for all n. E.g., show that 2 is a primitive root $\bmod 3^{n}$ for all n.
7. Let $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$be a primitive root $\bmod p$. Show that a^{k} is also a primitive root $\bmod p$ if and only if $(k, p-1)=1$. Conclude that there are exactly $\varphi(\varphi(p-1))$ primitive roots $\bmod p$ in $(\mathbb{Z} / p \mathbb{Z})^{\times}$.
8. Let G be a group and $g \in G$. Show that $\operatorname{ord}(g)=n$ if and only if
(a) $g^{n}=e \mathrm{AND}$
(b) for every prime $p \mid n, g^{n / p} \neq e$.

