Math 30810 Honors Algebra 3 Homework 6

Andrei Jorza

Due Wednesday, October 16

Do 5.

- 1. Explicit Chinese Remainder Theorem.
 - (a) Let m and n be coprime integers and let u and v be integers such that mu + nv = 1 (from Bézout's relation). Show that the system of equations

$$\begin{cases} x \equiv a \pmod{m} \\ x \equiv b \pmod{n} \end{cases}$$

has the unique solution $x \equiv anv + bmu \pmod{mn}$.

(b) Compute

$$12^{34^{56^{78}}} \pmod{90}$$

[Hint: Use the Chinese Remainder Theorem.] (A bit on notation: the exponent of 56 is 78, the exponent of 34 is 56^{78} , the exponent of 12 is $34^{56^{78}}$. In particular, this is NOT ($(12^{34})^{56}$)⁷⁸.)

- 2. Artin 2.9.5 on page 73.
- 3. Let p be a prime integer. Show that $(p-1)! \equiv -1 \pmod{p}$. [Hint: There are two ways to do this. Either (a) decompose the polynomial $X^{p-1} 1 \mod{p}$ into linear factors or (b) interpret (p-1)! as a product of elements in $(\mathbb{Z}/p\mathbb{Z})^{\times}$.]
- 4. Artin 2.12.1 on page 74.
- 5. Artin 2.12.2 on page 75.
- 6. Let p be an odd prime and $a \in \mathbb{Z}$ a primitive root mod p.
 - (a) Show that $a^{p^{n-1}}(p+1)$ is a primitive root mod p^n .
 - (b) If a is also a primitive root mod p^2 show that it is a primitive root mod p^n for all n. E.g., show that 2 is a primitive root mod 3^n for all n.
- 7. Let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ be a primitive root mod p. Show that a^k is also a primitive root mod p if and only if (k, p-1) = 1. Conclude that there are exactly $\varphi(\varphi(p-1))$ primitive roots mod p in $(\mathbb{Z}/p\mathbb{Z})^{\times}$.
- 8. Let G be a group and $g \in G$. Show that $\operatorname{ord}(g) = n$ if and only if
 - (a) $g^n = e$ AND
 - (b) for every prime $p \mid n, g^{n/p} \neq e$.