Math 30810 Honors Algebra 3 Homework 8

Andrei Jorza

Due in class Wednesday, November 6

Do 5.

- 1. Let G be a group, H a subgroup of G and N a normal subgroup of G. Show that HN = NH is a subgroup of G as well.
- 2. A short exact sequence of groups is a sequence of group homomorphisms

$$1 \to N \xrightarrow{f} G \xrightarrow{g} K \to 1$$

such that $f: N \to G$ is injective, $g: G \to K$ is surjective, and $\text{Im } f = \ker g$. A section of such an exact sequence is defined to be a group homomorphism $s: K \to G$ such that $g \circ s = \text{id}_K$.

- (a) Show that in the short exact sequence above $N \cong f(N) \triangleleft G$ and $G/f(N) \cong K$.
- (b) Suppose that the exact sequence above admits a section $s: K \to G$. Show that for every $x \in G$ one can find $n \in N$ such that x = f(n)s(g(x)) and deduce that $G \cong N \rtimes K$ is a semidirect product.
- (c) (Extra credit) Show that if $G \cong N \rtimes K$ then one can find an exact sequence $1 \to N \to G \to K \to 1$ that admits a section $s: K \to G$.

3. Let $\zeta = e^{2\pi i/3}$, $x = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $y = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix}$. Let $G = \langle x, y \rangle \subset \operatorname{GL}(2, \mathbb{C})$ be the subgroups generated by x and y.

- (a) Show that x has order 4, y has order 3 and $xy = y^2 x$.
- (b) Show that G has order 12 with $G = \{y^b x^a \mid 0 \le a < 4, 0 \le b < 3\}.$
- (c) Show that $G \cong \mathbb{Z}/3\mathbb{Z} \rtimes_{\phi} \mathbb{Z}/4\mathbb{Z}$ for some $\phi : \mathbb{Z}/4\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/3\mathbb{Z})$. [Hint: Use the criterion for when a group is a semidirect product.]
- 4. Consider the homomorphism $\phi : S_3 \to \text{Inn}(S_3) = \text{Aut}(S_3)$ defined by $\phi_g(x) = gxg^{-1}$. Consider the groups $G_0 = S_3 \rtimes_{\phi} S_3$, $G_1 = S_3 \rtimes_{\phi} A_3$ and $G_2 = A_3 \rtimes_{\phi} A_3$.
 - (a) Show that $G_2 \cong (\mathbb{Z}/3\mathbb{Z})^2$ [Hint: $A_3 \cong \mathbb{Z}/3\mathbb{Z}$],
 - (b) Show that $G_2 \triangleleft G_1$ with $G_1/G_2 \cong \mathbb{Z}/2\mathbb{Z}$,
 - (c) Show that $G_1 \triangleleft G_0$ with $G_0/G_1 \cong \mathbb{Z}/2\mathbb{Z}$.

[Hint: To show normality you can use a criterion from a previous problem set. No need to do any conjugation.]

5. Show that S_n is generated by the transpositions (12), (23), ..., (n-1,n). [Hint: (23)(12)(23) = (13). Recall that in class we showed that S_n is generated by all transpositions.]

- 6. (a) Show that $(12...n)(i, i+1)(12...n)^{-1} = (i+1, i+2)$ for $i+2 \le n$.
 - (b) Show that $(12...n)^k (12)(12...n)^{-k} = (k+1, k+2)$ for $k+2 \le n$.
 - (c) Deduce that S_n is generated by (12) and (12...n). [Hint: Use the previous problem.]
- 7-8 (This counts as two problems) Let $n \geq 3$ be an odd number. Consider the group homomorphism $\phi : (\mathbb{Z}/n\mathbb{Z})^{\times} \to \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ given by $\phi_a(x) = ax$. Recall that the dihedral group $D_{2n} = \{F^u R^v \mid 0 \leq u \leq 1, 0 \leq v < n\}$.
 - (a) For $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ and $b \in \mathbb{Z}/n\mathbb{Z}$ define $\Psi_{a,b}(F^u R^v) := (FR^b)^u (R^a)^v$. Show that $\Psi_{a,b} \in \operatorname{Aut}(D_{2n})$. [Hint: Use the previous problem.]
 - (b) Show that $\Psi: (\mathbb{Z}/n\mathbb{Z}) \rtimes_{\phi} (\mathbb{Z}/n\mathbb{Z})^{\times} \to \operatorname{Aut}(D_{2n})$ is an injective group homomorphism.
 - (c) Show that Ψ is surjective, i.e., that every automorphism of D_{2n} is of the form $\Psi_{a,b}$ for some a and b and conclude that

$$\operatorname{Aut}(D_{2n}) \cong (\mathbb{Z}/n\mathbb{Z}) \rtimes_{\phi} (\mathbb{Z}/n\mathbb{Z})^{\times}$$

[Hint: Use part (a).]

(d) (Extra credit) For a group G the group of outer automorphisms is defined as $\operatorname{Out}(G) = \operatorname{Aut}(G) / \operatorname{Inn}(G)$, a group since $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$ from a previous homework. Show that $\operatorname{Out}(D_{2n}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}/\{\pm 1\}$.

Remark: If G is a group and ϕ : Aut $(G) \to$ Aut(G) is the identity homomorphism then the semidirect product $G \rtimes_{\phi} \text{Aut}(G)$ is called the holomorph of G. The point of this exercise was to show that Aut (D_{2n}) when $n \ge 3$ was odd was the holomorph of $\mathbb{Z}/n\mathbb{Z}$. In fact this is true for all n.