Math 30810 Honors Algebra 3 Homework 9

Andrei Jorza

Due Wednesday, November 13

Do 5.

- 1. Show that the matrices $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $A^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ are conjugate in $GL(2, \mathbb{R})$ but not conjugate in $SL(2, \mathbb{R})$.
- 2. Let p be a prime and $n \ge 2$ an integer. Show that the center of $SL_n(\mathbb{F}_p)$ has order (n, p-1). What is the order of $PSL_n(\mathbb{F}_p)$? (You may assume the center consists of scalar matrices.)
- 3. For a matrix $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}(2, \mathbb{R})$ and $z \in \mathbb{C}$ define, if possible, $g \cdot z = \frac{az+b}{cz+d}$.
 - (a) Show that $\operatorname{Im}(g \cdot z) = \frac{\det(g) \operatorname{Im}(z)}{|cz+d|^2}$.
 - (b) Show that $g \cdot z$ defined an action of the subgroup $\operatorname{GL}(2, \mathbb{R})^+$ of matrices with positive determinant on the set $\mathcal{H} = \{z \in \mathbb{C} | \operatorname{Im} z > 0\}.$
 - (c) Compute the stabilizers $\operatorname{Stab}(i)$ and $\operatorname{Stab}(\zeta_3)$.
 - (d) (Optional) Show that this action is transitive, i.e., all of \mathcal{H} is one orbit.
- 4. Artin 6.7.3 on page 190.
- 5. Artin 6.7.7 on page 191.
- 6. Artin 6.8.1 on page 191.
- 7. Artin 6.M.7 on page 194. (Careful: what Artin calls D_3 in part (a) we called D_6 , it is the dihedral group with 6 elements, isomorphic to $S_{3.}$)
- 8. Artin 7.2.5 on page 221.