Math 30810 Honors Algebra 3 Homework 9

Andrei Jorza
Due Wednesday, November 13

Do 5.

1. Show that the matrices $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $A^{-1}=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$ are conjugate in $\mathrm{GL}(2, \mathbb{R})$ but not conjugate in $\operatorname{SL}(2, \mathbb{R})$.
2. Let p be a prime and $n \geq 2$ an integer. Show that the center of $\mathrm{SL}_{n}\left(\mathbb{F}_{p}\right)$ has order $(n, p-1)$. What is the order of $\operatorname{PSL}_{n}\left(\mathbb{F}_{p}\right)$? (You may assume the center consists of scalar matrices.)
3. For a matrix $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}(2, \mathbb{R})$ and $z \in \mathbb{C}$ define, if possible, $g \cdot z=\frac{a z+b}{c z+d}$.
(a) Show that $\operatorname{Im}(g \cdot z)=\frac{\operatorname{det}(g) \operatorname{Im}(z)}{|c z+d|^{2}}$.
(b) Show that $g \cdot z$ defined an action of the subgroup $\mathrm{GL}(2, \mathbb{R})^{+}$of matrices with positive determinant on the set $\mathcal{H}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$.
(c) Compute the stabilizers $\operatorname{Stab}(i)$ and $\operatorname{Stab}\left(\zeta_{3}\right)$.
(d) (Optional) Show that this action is transitive, i.e., all of \mathcal{H} is one orbit.
4. Artin 6.7.3 on page 190.
5. Artin 6.7.7 on page 191.
6. Artin 6.8.1 on page 191.
7. Artin 6.M. 7 on page 194. (Careful: what Artin calls D_{3} in part (a) we called D_{6}, it is the dihedral group with 6 elements, isomorphic to S_{3}.)
8. Artin 7.2.5 on page 221.
