Math 30810 Honors Algebra 3 Homework 11

Andrei Jorza
Due in class Wednesday, December 4

Do 5.

1. Let G be a group. If $g, h \in G$ define their commutator as $[g, h]=g h g^{-1} h^{-1}$. The commutator subgroup $[G, G]<G$ is the group generated by all $\{[g, h] \mid g, h \in G\}$.
(a) Show that $a[b, c] a^{-1} \in[G, G]$ for all $a, b, c \in G$.
(b) Show that $[G, G] \triangleleft G$ and $G^{\mathrm{ab}}=G /[G, G]$ is an abelian group. The group G^{ab} is called the abelianization of the group G.
(c) Show that if A is an abelian group then $\operatorname{Hom}(G, A)=\operatorname{Hom}\left(G^{\mathrm{ab}}, A\right)$. (This is taken to mean that G^{ab} is the largest abelian quotient of G.
2. See Problem 1 for the definition of abelianization. You do not need to solve that problem.
(a) Determine $S_{n}^{\text {ab }}$ for all n.
(b) (See Problem 1) Let p be a prime and G a nonabelian group of order p^{3}. Show that $[G, G]=Z(G)$.
3. Let $n \geq 5$ and H a subgroup of S_{n}. Assume that H is not A_{n} or S_{n}. Show that $\left[S_{n}: H\right] \geq n$. [Hint: As in a previous problem set, if H is a subgroup of G then G acts by left multiplication on G / H giving a homomorphism $G \rightarrow S_{G / H}$.]
4. (a) Suppose G is a group and $g, h \in G$. Show that $g h$ and $h g$ are conjugate.
(b) A permutation $\sigma \in S_{3}$ is said to be good if for every group G and every elements $g_{1}, g_{2}, g_{3} \in G$, the two products $g_{1} g_{2} g_{3}$ and $g_{\sigma(1)} g_{\sigma(2)} g_{\sigma(3)}$ are conjugate in G. Show that σ is good if and only if $\sigma \in\langle(123)\rangle$. [Hint: conjugate matrices have the same trace.]
5. Artin 7.M. 12 on page 228.
6. Let R be a ring. An idempotent element of R is an element $e \in R$ such that $e^{2}=e$. Consider $e R=\{e x \mid x \in R\}$. Show that $\left(e R,+_{R}, \cdot_{R}, 0_{R}, e\right)$ is a ring.
7. Show that $\mathbb{C}[x] \llbracket y \rrbracket \neq \mathbb{C} \llbracket y \rrbracket[x]$.
8. Artin 11.1.6 on page 354 .
9. Artin 11.1 .7 on page 354 .
