# Math 30810 Honors Algebra 3 Homework 12 

Andrei Jorza<br>Due Wednesday, December 11

## Do 5.

1. Let $R$ be a ring. Show that $R \llbracket x \rrbracket^{\times}=R^{\times}+x R \llbracket x \rrbracket$.
2. Let $R$ be a ring and $I$ an ideal of $R[X]$. For a polynomial $P(X) \in R[X]$ let $\ell(P)$ be the leading coefficient of $P(X)$. Define $J=\{\ell(P) \mid P \in I\}$. Show that $J$ is an ideal of $R$. (This is very useful.)
3. Consider the ring $R=\mathbb{Z}[\sqrt{-14}]=\{m+n \sqrt{-14} \mid m, n \in \mathbb{Z}\}$. Let $I=(3,1+\sqrt{-14})$. Show that $I^{2}=(9,7+\sqrt{-14})$ and that $I^{4}=(5+2 \sqrt{-14})$ and thus that $I^{4}$ is a principal ideal. (One can, in fact, show that the fourth power of any ideal in this ring is principal, but this would be the topic of a graduate number theory course.)
4. Let $R$ be a ring and $p$ a prime number such that $p=0$ in $R$. Show that $\phi(x)=x^{p}$ is a ring homomorphism $\phi: R \rightarrow R$. (The homomorphism $\phi$ is called the Frobenius homomorphism, which will be essential next semester.)
5. Artin 11.3 .3 on page 354
6. Artin 11.3.4 on page 355 .
7. Artin 11.3 .9 on page 355 .
8. Artin 11.3 .10 on page 355 .
9. Artin 11.4.4 on page 355.
10. Artin 11.6.7 on page 356 .
11. Artin 11.M. 7 on page 358.
