Math 30810 Honors Algebra 3 Second Exam

Andrei Jorza

November 11, 2016

Do 5.

1. Suppose m and n are integers such that $m>n!$. Let G be a simple group of order m which acts on a set of cardinality n. Show that G acts trivially, i.e., $g x=x$ for all g and x. [Hint: Recall the two equivalent definitions of group action.]
2. Let (G, \cdot) be a group, $(A,+)$ an abelian group, and $H=\operatorname{Maps}(G \rightarrow A)$.
(a) Show that H is a group under addition of functions with identity element given by the 0 function.
(b) Show that G acts on H via $(g \phi)(x)=\phi(x g)$.
(c) Show that the orbit of a group homomorphism $\phi \in H$ under the action of G is in bijection with $\operatorname{Im} \phi \subset A$.
3. Consider the homomorphism $\phi: \mathbb{Z} / 6 \mathbb{Z} \rightarrow \operatorname{Aut}(\mathbb{Z} / 5 \mathbb{Z})$ defined by $a \mapsto \phi_{a}$ where $\phi_{a} \in \operatorname{Aut}(\mathbb{Z} / 5 \mathbb{Z})$ is defined as $\phi_{a}(x)=2^{a} x$. In the group $G=\mathbb{Z} / 5 \mathbb{Z} \rtimes_{\phi} \mathbb{Z} / 6 \mathbb{Z}$ write $R=\left(0_{\mathbb{Z} / 6 \mathbb{Z}}, 1_{\mathbb{Z} / 5 \mathbb{Z}}\right)$ and $F=$ $\left(1_{\mathbb{Z} / 6 \mathbb{Z}}, 0_{\mathbb{Z} / 5 \mathbb{Z}}\right)$. Compute the order of R, F and write $F R F^{-1}$ in the form $F^{x} R^{y}$ for some explicit integers x, y.
4. A finite group G acts on a finite set S. For $g \in G$ we denote $S^{g}=\{s \in S \mid g s=s\}$.
(a) Show that if g and h are conjugate in G then there is a bijection between S^{g} and S^{h}.
(b) Show that the number of orbits of G acting on S is equal to

$$
|G|^{-1} \sum_{\text {conjugacy classes } C_{g}}\left|C_{g} \| S^{g}\right|
$$

where the sum is taken over the distinct conjugacy classes of G.
[Hint: Recall from the homework Burnside's formula: if a finite group G acts on a finite set S then the number of orbits of G acting on S is $\left.|G|^{-1} \sum_{g \in G}\left|S^{g}\right|.\right]$
5. For an abelian group A (written additively) we denote $A[2]=\{a \in A \mid 2 a=0\}$. Show that for all $n \geq 2$ we have $\operatorname{Hom}\left(S_{n}, A\right) \cong A[2]$.
6. What is the order of the automorphism group $\operatorname{Aut}(\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 9 \mathbb{Z})$?
7. Let $n \geq 3$ be odd. Find all conjugacy classes in the dihedral group D_{n} of order $2 n$.
8. (a) Show that (123) and (132) are not conjugate in A_{3} or A_{4}.
(b) Show that if $n \geq 5$ is odd then $(12 \ldots, n-2, n-1, n)$ and ($12 \ldots n-2, n, n-1$) are not conjugate in A_{n}.
9. Let G be a group such that $G / Z(G)$ is a cyclic group. Show that G is abelian.

