Math 40520 Theory of Number Homework 3

Due Wednesday, 9/09

Do 5.

- 1. Exercise 2.9 on page 45 in the textbook.
- 2. Exercise 2.13 on page 46 in the textbook.
- 3. Exercise 2.14 on page 46 in the textbook.
- 4. Exercise 2.17 on page 46 in the textbook.
- 5. Exercise 2.31 on page 47 in the textbook.
- 6. Let n > 1 and a be integers. Show that there exists an integer m > 0 such that $a^m \equiv 1 \pmod{n}$ if and only if (a, n) = 1.
- 7. Do there exist integers n such that $\varphi(n) = 14$?
- 8. For what integers n does $\varphi(n)$ divide n?
- 9. Write a program that takes a fraction ^m/_n and writes it in base b in the form D_a...D₁.E_b...E₁ F_c...F₁(b). You are encouraged to use Sage where you can factor into primes and compute multiplicative orders easily. Note that Sage writes integers in base b easily using the command x.str(base=b).