Math 40520 Theory of Number Homework 6

Due Wednesday, 9/30, in class

Do 5.

- 1. Compute $\binom{194871}{1610}$ mod 385. [Hint: Use our theorem for binomial coefficients modulo primes (Lucas' theorem) and the Chinese Remainder Theorem.]
- 2. (This is a more sophisticated looking, yet easier, version of the previous problem.) A Sophie-Germaine prime is a prime p such that q = 2p + 1 is also a prime (conjecturally there are infinitely many such primes, the largest known having about 388k digits). Suppose $p \ge 7$ is a Sophie-Germaine prime and q = 2p + 1. Show that

$$\binom{pq+pq^2}{pq} \equiv 30q - 2p \equiv 58p + 30 \pmod{pq}$$

[Hint: Same as for the previous problem, but it's easier to write down the digits in bases p and q.]

- 3. Find all solutions of the equation $x^3 x 1 \equiv 0 \pmod{5^k}$ for k = 1, 2, 3.
- 4. Solve $x^{11} \equiv 7 \pmod{32}$. (You have two means of solving this: either primitive roots, or Hensel's lemma.)
- 5. Let p > 3 be a prime number. Find a solution in \mathbb{Z}_{p^6} to the equation

$$x^3 \equiv 1 + p^2 \pmod{p^6}$$

- 6. Find all solutions of the congruence $x^3 + 4x^2 + 19x + 1 \equiv 0 \pmod{147}$. [Hint: $147 = 3 \cdot 7^2$.]
- 7. Determine $v_7(\varphi(200!))$.
- 8. Show that there exists no positive integer n such that $\varphi(n) = 62$.