Math 40520 Theory of Number Homework 10

Due Wednesday, 11/4

Do 4.

For some of these questions you'll need a computer.

1-2 (Counts as 2 problems)

Consider the equation $x^2 + 11y^2 = 3$.

- (a) Show that for all n it has solutions mod 2^n of the form (0, y). [Hint: Recall that $x^2 \equiv u \pmod{2^n}$ has solutions for all n as long as $u \equiv 1 \pmod{8}$.]
- (b) Show that it has solutions mod 3^n of the form (x, 1).
- (c) Show that it has solutions mod 11^n of the form (x, 0).
- (d) If $p \notin \{2, 3, 11\}$ is a prime show that it has a solution $(x_0, y_0) \mod p$ and conclude that it must have a solution mod p^n either of the form (x, y_0) or (x_0, y) .
- (e) Use Hasse's theorem to conclude that the equation has solutions in \mathbb{Q} . (One such solution is (1/2, 1/2).)
- 3. Textbook exercise 5.3 on page 121.
- 4. Textbook exercise 5.4 on page 121.
- 5. Textbook exercise 5.9 on page 121.
- 6. A fraction $\frac{a}{b} \approx 0.515287517$ has a and b with 4 digits. What are they?
- 7. A polynomial $P(X) \in \mathbb{Q}[X]$ is a product of 2 linear and 2 quadratic irreducible polynomials. Find these factors knowing only the approximation

$$P(X) \approx X^{6} - 5.380846X^{5} + 1.723134X^{4} + 21.724378X^{3} - 14.273383X^{2} - 10.412687X + 1.997512.$$

8. Suppose x > 0 is a real number. Find positive integers a_0, \ldots, a_n such that $\frac{7x+3}{5x+2} = [a_0; a_1, \ldots, a_d, x]$.