Math 30820 Honors Algebra 4 Homework 1

Andrei Jorza

Due Wednesday, 1/29/2020

Do 5.

1. Artin 14.2 .3 (a) and from (b) the "only if" part on page 437.
2. Artin 14.2 .4 on page 437 .
3. Artin 14.4.3 on page 438.
4. Artin 14.7 .9 on page 439 .
5. Artin 14.8 .2 on page 440. (Here the "corresponding linear operator" refers to multiplication by t.)
6. Suppose α is integral over a ring R, i.e., there exists a monic polynomial in $R[X]$ vanishing at α. Show that the R-module $R[\alpha]$ (defined last semester as $\{P(\alpha) \mid P \in R[X]\})$ is in fact the set $\left\{a_{0}+a_{1} \alpha+\right.$ $\left.\cdots+a_{n} \alpha^{n} \mid a_{0}, \ldots, a_{n} \in R\right\}$ for some integer n.
7. Suppose R is a commutative ring with unit and M is an R-module. Define the annihilator of M in R as $\operatorname{Ann}_{R}(M)=\{r \in R \mid r m=0, \forall m \in M\}$.
(a) Show that $\operatorname{Ann}_{R}(M)$ is an ideal of R.
(b) Show that if $I \subset \operatorname{Ann}_{R}(M)$ is an ideal of R then M is naturally an R / I-module.
(c) What is $\operatorname{Ann}_{R}(R / I)$?
8. Let M_{1}, \ldots, M_{n} be R-modules, and let $N_{1} \subset M_{1}, \ldots, N_{n} \subset M_{n}$ be R-submodules. Show that

$$
M_{1} \oplus \ldots \oplus M_{n} / N_{1} \oplus \ldots \oplus N_{n} \cong M_{1} / N_{1} \oplus \ldots \oplus M_{n} / N_{n}
$$

