Math 30820 Honors Algebra 4 Homework 2

Andrei Jorza

Due Wednesday, 2/5/2020

Do 5.

- 1. Let *R* be a PID and $\text{Tor}_R(M) = \{m \in M \mid \exists a \in R \{0\}, am = 0\}.$
 - (a) Show that $\operatorname{Tor}_R(M)$ is an *R*-submodule of *M*.
 - (b) If $f: M \to N$ is a homomorphism of *R*-modules then $f(\operatorname{Tor}_R(M)) \subset \operatorname{Tor}_R(N)$.
 - (c) Show that $M/\operatorname{Tor}_R(M)$ is free.
- 2. Let F be a field and $A \in M_{n \times n}(F)$ be a matrix. Recall that in class we defined the following F[X]module M_A : as an abelian group $M_A = F^n$ and scalar multiplication is given by $P(X) \cdot v := P(A)v$ where $P(A) \in M_{n \times n}(F)$ and F^n is interpreted as $M_{n \times 1}(F)$. Suppose $S \in GL(n, F)$. Show that $M_A \cong M_{SAS^{-1}}$ as F[X]-modules.
- 3. Consider the ring $R = F[X]/(X^2)$. Suppose M is a finitely generated R-module. Show that there exists some matrix $A \in M_{n \times n}(F)$ for some $n \ge 1$, with $A^2 = 0$, such that $M \cong M_A$ from the previous exercise. [Hint: Show that M is naturally a finite dimensional vector space over F and define A as the matrix of multiplication by X.]
- 4. Show that a finitely generated abelian group is a free abelian group if and only if it contains no elements of finite order other that the identity element.
- 5. Artin 14.1.4 on page 437.
- 6. Artin 14.7.7 on page 439.
- 7. Artin 14.7.8 on page 439.
- 8. Suppose R is a commutative ring in which the "diagonalization lemma" holds, i.e., for any homomorphism $f: \mathbb{R}^n \to \mathbb{R}^m$ of free R-modules of finite rank, there exists a basis of \mathbb{R}^n and a basis of \mathbb{R}^m with respect to which the matrix of f is a diagonal matrix possibly padded with extra rows and columns. Show that every finitely generated ideal of R is principal. (Such rings are called Bézout domains.)
- 9. Let R be a PID. Suppose $a_1 \mid \ldots \mid a_m$ and $b_1 \mid \ldots \mid b_n$ are nonzero elements of R such that

$$R/(a_1) \oplus \cdots \oplus R/(a_m) \cong R/(b_1) \oplus \cdots \oplus R/(b_n).$$

Show that m = n and $(a_i) = (b_i)$ for all i.