Math 30820 Honors Algebra 4 Homework 4

Andrei Jorza

Due Wednesday, 2/19/2020

Do 5.

Throughout this problem set R is an integral domain, unless otherwise specified.

1. Let M be a noetherian module over a ring R. Color the elements of M electorally (red or blue). We say that a submodule A of M is monochromatic if all the elements of A are colored in the same color. Show that there exist maximal monochromatic submodules of M. Bonus: For how many of the 256 colorings of the \mathbb{F}_{2}-module \mathbb{F}_{2}^{3} is there a unique maximal monochromatic submodule? Feel free to use a computer for this one.
2. Artin 14.9 .1 on page 440 .
3. Artin 14.9 .5 on page 440.
4. Artin 14.M. 3 on page 440.
5. Artin 14.M. 7 on page 441.
6. Artin 15.2 .2 on page 472 .
7. Artin 15.3.2 on page 472.
8. Artin 15.3 .3 on page 472 .
9. Artin 15.4 .1 on page 473.
