Math 30820 Honors Algebra 4 Homework 6

Andrei Jorza

Due Wednesday, 3/4/2020

Do 5.

1. Show that every extension K / F with $[K: F]=2$ is a normal extension. When is such an extension separable?
2. Let $P \in F[X]$, of degree n, and K be the splitting field of P over F. Show that $[K: F] \mid n!$.
3. Let F be a field, $P \in F[X]$ a monic polynomial and K a field that contains all the roots $\alpha_{1}, \ldots, \alpha_{n}$ of the polynomial $P(X)$, where n is the degree of $P(X)$. The discriminant of $P(X)$ is defined as

$$
\Delta=\prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

Show that P is separable if and only if $\Delta \neq 0$ and that

$$
\Delta=(-1)^{\binom{n}{2}} \prod_{i=1}^{n} P^{\prime}\left(\alpha_{i}\right)
$$

4. (Do one of the 2 parts)
(a) Consider the polynomial $P(X)=X^{5}+p X+q$. Show that it has discriminant

$$
\Delta=5^{5} q^{4}+4^{4} p^{5}
$$

(b) (This part is worth 2 extra points) Consider the polynomial $P(X)=X^{n}+p X+q$. Show that it has discriminant

$$
\Delta=(-1)^{\binom{n}{2}} n^{n} q^{n-1}+(-1)^{\left(\frac{n-1}{2}\right)}(n-1)^{n-1} p^{n}
$$

5. Let $\alpha \in \mathbb{R}$ such that $\alpha^{4}=5$.
(a) Is $\mathbb{Q}\left(i \alpha^{2}\right)$ normal over \mathbb{Q} ?
(b) Is $\mathbb{Q}(\alpha+i \alpha)$ normal over $\mathbb{Q}\left(i \alpha^{2}\right)$?
(c) Is $\mathbb{Q}(\alpha+i \alpha)$ normal over \mathbb{Q} ?
6. Let F be a field of characteristic p that is not perfect, i.e., the Frobenius homomorphism $\phi: F \rightarrow F$ given by $\phi(x)=x^{p}$ is not surjective. Show that there exist inseparable irreducible polynomials in $F[X]$.
7. Let F be a field of characteristic p and let K / F be a finite extension with $p \nmid[K: F]$. Show that K / F is a separable extension, i.e., for every $\alpha \in K$ the minimal polynomial of α over F is a separable polynomial.
