Math 30820 Honors Algebra 4 Homework 8

Andrei Jorza

Due Wednesday, 4/1/2020

Do 4.

Throughout this problem set $\Phi_{n}(X)$ is the n-th cyclotomic polynomial.

1. For a positive integer n we denote by $s(n)$ the largest square-free divisor of n. Show that

$$
\Phi_{n}(X)=\Phi_{s(n)}\left(X^{n / s(n)}\right)
$$

[Hint: Use the Möbius inversion formula.]
2. Show that

$$
\Phi_{n}(1)= \begin{cases}0 & n=1 \\ p & n=p^{a} \\ 1 & n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}, k \geq 2\end{cases}
$$

[Hint: Use induction.]
3. Show that

$$
\prod_{1 \leq k \leq n,(k, n)=1} \sin \left(\frac{k \pi}{n}\right)=\frac{\Phi_{n}(1)}{2^{\varphi(n)}}
$$

where φ is Euler's function. Remark that $\Phi_{n}(1)$ is computed in the previous problem. [Hint: Write $\Phi_{n}(1)$ as a product over the primitive roots of 1 and use double angle formulas.]
4. Let p be a prime. Let F be the union of the fields of rational functions $\mathbb{F}_{p}(x) \subset \mathbb{F}_{p}(\sqrt[p]{x}) \subset \mathbb{F}_{p}(\sqrt[p^{2}]{x}) \subset$ $\ldots \subset \mathbb{F}_{p}(\sqrt[p n]{x}) \subset \ldots$ Show that F is the smallest perfect field containing $\mathbb{F}_{p}(x)$.
5. Suppose $\sigma: K \rightarrow L$ is a field isomorphism which sends the subfield $F \subset K$ to the subfield $\sigma(K) \subset L$. Show that $\operatorname{Aut}(L / \sigma(F))=\sigma \operatorname{Aut}(K / F) \sigma^{-1}$.
6. Let K be the splitting field over \mathbb{Q} of $X^{8}-2$. Show that $\operatorname{Gal}(K, \mathbb{Q}(i)) \cong \mathbb{Z} / 8 \mathbb{Z}$ and $\operatorname{Gal}(K / \mathbb{Q}(\sqrt{2})) \cong D_{4}$, the dihedral group with 8 elements.
7. Let $\alpha_{1}=\sqrt{1+\sqrt{3}}, \alpha_{2}=\sqrt{1-\sqrt{3}}$, two roots of the irreducible polynomial $X^{4}-2 X^{2}-2 \in \mathbb{Q}[X]$.
(a) Show that $\mathbb{Q}\left(\alpha_{1}\right) \cap \mathbb{Q}\left(\alpha_{2}\right)=\mathbb{Q}(\sqrt{3})$.
(b) Show that $\mathbb{Q}\left(\alpha_{1}\right), \mathbb{Q}\left(\alpha_{2}\right)$ and $\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right)$ are Galois over $\mathbb{Q}(\sqrt{3})$ and that $\operatorname{Gal}\left(\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right) / \mathbb{Q}(\sqrt{3})\right) \cong$ $(\mathbb{Z} / 2 \mathbb{Z})^{2}$.
8. Show that $K=\mathbb{Q}(\sqrt{2+\sqrt{2}})$ is Galois over \mathbb{Q} and that $\operatorname{Gal}(K / \mathbb{Q}) \cong \mathbb{Z} / 4 \mathbb{Z}$.

