Math 30820 Honors Algebra 4 Homework 9

Andrei Jorza

Due 4/8/2020

Do 4.

1. Recall from class that if L is the splitting field of $X^{8}-2$ over \mathbb{Q} then we embedded $\operatorname{Gal}(L / \mathbb{Q})$ into group $\left(\begin{array}{cc}(\mathbb{Z} / 8 \mathbb{Z})^{\times} & \mathbb{Z} / 8 \mathbb{Z} \\ 0 & 1\end{array}\right)$, an automorphism $\sigma \in \operatorname{Gal}(L / \mathbb{Q})$ being associated with a matrix $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$ if $\sigma(\zeta)=\zeta^{a}$ and $\sigma(\sqrt[8]{2})=\zeta^{b} \sqrt[8]{2}$ and that in this case the following compatibility must occur:

$$
\sigma\left(\zeta+\zeta^{-1}\right)=\sigma(\sqrt{2})=\sigma(\sqrt[8]{2})^{4}
$$

Show that $\operatorname{Gal}(L / \mathbb{Q})$ can be identified with the subgroup of matrices $\left\{\left(\begin{array}{cc} \pm 3 & \text { odd } \\ 0 & 1\end{array}\right)\right\} \cup\left\{\left(\begin{array}{cc} \pm 1 & \text { even } \\ 0 & 1\end{array}\right)\right\}$. (Remark: this Galois group is the semidirect product $\mathbb{Z} / 8 \mathbb{Z} \rtimes \mathbb{Z} / 2 \mathbb{Z}$ given by $\mathbb{Z} / 2 \rightarrow \operatorname{Aut}(\mathbb{Z} / 8)$ sending 1 to multiplication by 3.)
2. Let $p>2$ be a prime number. Show that $\mathbb{Q}\left(\sqrt{(-1)^{(p-1) / 2} p}\right) \subset \mathbb{Q}\left(\zeta_{p}\right)$. [Hint: Compute the discriminant of $X^{p}-1$.]
3. Write a computer program that computes the discriminant of the polynomial

$$
P(X)=X^{5}+a X^{4}+b X^{3}+c X^{2}+d X+e
$$

as a polynomial in a, b, c, d, e. Submit the expression and the code.
4. Artin 16.1.1 on page 505 .
5. Artin 16.2.2 on page 506 .
6. Artin 16.2 .7 on page 506 .
7. Artin 16.M. 7 on page 512.
8. Let $K=\mathbb{Q}\left(\zeta_{7}, \sqrt[7]{2}\right)$ with Galois group $\operatorname{Gal}(K / \mathbb{Q}) \cong\left\{\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \in \operatorname{GL}\left(2, \mathbb{F}_{7}\right)\right\}$. Let $H \subset \operatorname{Gal}(K / \mathbb{Q})$ be the subgroup generated by the matrix $A=\left(\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right)$. Show that $K^{H}=\mathbb{Q}\left(\zeta_{7}^{6} \sqrt[7]{2}\right)$.

