Math 30820 Honors Algebra 4 Homework 11

Andrei Jorza

Due Wednesday, 4/29/2020

Do 4.

Let $C_{5}=\mathbb{Z} / 5 \mathbb{Z}, D_{5}$ the dihedral group with 10 elements, $F_{20}=\left\{\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \in \operatorname{GL}\left(2, \mathbb{F}_{5}\right)\right\} \cong \mathbb{Z} / 5 \mathbb{Z} \rtimes$ $(\mathbb{Z} / 5 \mathbb{Z})^{\times}$. You may take for granted that every transitive subgroup of S_{5} is isomorphic to one of the groups $C_{5}, D_{5}, F_{20}, A_{5}$ and S_{5}.

1. Let K be the splitting field over \mathbb{Q} of the polynomial $P(X)=X^{5}-5 X+12 \in \mathbb{Q}[X]$.
(a) Show that $P(X)$ is irreducible.
(b) Show that $10 \mid[K: \mathbb{Q}]$. [Hint: $P(X)$ has two pairs of complex conjugate roots.]
(c) Assume that $P(X)$ is solvable by radicals (it is), which is equivalent to $\operatorname{Gal}(K / \mathbb{Q})$ is a solvable group. Show that $\operatorname{Gal}(K / \mathbb{Q}) \cong D_{5}$, the dihedral group with 10 elements. [Hint: What is the discriminant of $P(X)$?]
2. Artin 16.9 .12 on page 509 .
3. Artin 16.9 .13 on page 509 .
4. Artin 16.9 .18 on page 509 .
5. Artin 16.M. 10 on page 512.
6. Let t be an indeterminate. Show that

$$
\mathbb{F}_{2}(t)^{\operatorname{Aut}\left(\mathbb{F}_{2}(t) / \mathbb{F}_{2}\right)}=\mathbb{F}_{2}\left(\frac{\left(t^{2}+t+1\right)^{3}}{t^{2}(t+1)^{2}}\right)
$$

7. Show that the irreducible polynomial $x^{4}+1 \in \mathbb{Z}[X]$ is reducible \bmod every prime. [Hint: Use $\mathbb{F}_{p^{2}}$.]
