Math 30810 Honors Algebra 3 Homework 3

Andrei Jorza

Due Wednesday, September 22

Do 5 questions.

- 1. Artin 2.4.3 or 2.6.4
- 2. Artin 2.5.2
- $3. \ {\rm Artin} \ 2.6.2$
- 4. Artin 2.6.8 or 2.6.9
- 5. Artin 2.7.5
- 6. Let G be a group with subgroups H and K. Show that $H \cup K$ is a group if and only if one of H and K contains the other.
- 7. Recall from class that if S is the set of smooth functions defined on some open neighborhood of 0 in \mathbb{R} then we have an equivalence relation ~ that identifies two functions that agree on some open neighborhood of 0. Define a natural multiplication function on S/\sim . For this multiplication, determine the identity and the invertible elements.
- 8. Suppose $f : G \to \operatorname{GL}_n(\mathbb{R})$ is a group homomorphism with the property that for every $x \in G$, f(x) has integer entries. Show that $\operatorname{Im} f$, which a priori is a subgroup of $\operatorname{GL}_2(\mathbb{R})$, is in fact a subgroup of $\operatorname{GL}_n(\mathbb{Z})$.