Math 30810 Honors Algebra 3 Homework 4

Andrei Jorza

Due Wednesday, September 29

Do 5.

- $1. \ \mathrm{Artin} \ 2.6.7$
- 2. Artin 2.8.4.
- 3. Artin 2.8.6.
- 4. Artin 2.8.9.
- 5. (Very important) Suppose H < G such that [G:H] = 2. Show that $H \triangleleft G$.
- 6. Suppose H is a subgroup of a group G. Show that if H is a subgroup such that $gHg^{-1} \subset H$ for all $g \in G$, then $H \triangleleft G$.
- 7. Show that if G is a group of order 4 then either it is cyclic or it is isomorphic to the Klein 4-group V.
- 8. (This is a useful problem, in the textbook it's 2.5.6) For $1 \le i, j \le n$ consider the matrix $E_{ij} \in M_{n \times n}(\mathbb{C})$ with 1 in position ij and 0s everywhere else.
 - (a) For $i \neq j$ show that $I_n + E_{ij} \in \operatorname{GL}_n(\mathbb{C})$.
 - (b) For a general matrix $X \in \operatorname{GL}_n(\mathbb{C})$ compute XE_{ij} and $E_{ij}X$ and show that the only invertible matrices that commute with every other invertible matrix are the scalar ones.
- 9. Let $G = \operatorname{GL}_2(\mathbb{F}_2)$. Show that any $g \in G$ permutes the nonzero vectors of \mathbb{F}_2^2 . If you order these 3 non-zero vectors, this gives a map $f : G \to S_3$. Show that this map is an isomorphism.