Math 30810 Honors Algebra 3 Homework 4

Andrei Jorza

Due Wednesday, September 29

Do 5.

1. Artin 2.6.7
2. Artin 2.8.4.
3. Artin 2.8.6.
4. Artin 2.8.9.
5. (Very important) Suppose $H<G$ such that $[G: H]=2$. Show that $H \triangleleft G$.
6. Suppose H is a subgroup of a group G. Show that if H is a subgroup such that $g H g^{-1} \subset H$ for all $g \in G$, then $H \triangleleft G$.
7. Show that if G is a group of order 4 then either it is cyclic or it is isomorphic to the Klein 4 -group V.
8. (This is a useful problem, in the textbook it's 2.5.6) For $1 \leq i, j \leq n$ consider the matrix $E_{i j} \in M_{n \times n}(\mathbb{C})$ with 1 in position $i j$ and 0 s everywhere else.
(a) For $i \neq j$ show that $I_{n}+E_{i j} \in \mathrm{GL}_{n}(\mathbb{C})$.
(b) For a general matrix $X \in \mathrm{GL}_{n}(\mathbb{C})$ compute $X E_{i j}$ and $E_{i j} X$ and show that the only invertible matrices that commute with every other invertible matrix are the scalar ones.
9. Let $G=\mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)$. Show that any $g \in G$ permutes the nonzero vectors of \mathbb{F}_{2}^{2}. If you order these 3 non-zero vectors, this gives a map $f: G \rightarrow S_{3}$. Show that this map is an isomorphism.
