Math 30810 Honors Algebra 3 Homework 5

Andrei Jorza

Due Wednesday, October 13

Do 5.

- 1. Artin 2.9.5.
- 2. Artin 2.9.7.
- 3. Let G be a group and $g \in G$. Suppose $g^m = e$ and $g^n = e$ where m and n are coprime integers. Show that g = e.
- 4. Compute $12^{34^{56^{78}}} \mod 90$.
- 5. Let G be a group.
 - (a) Assume that H and K are subgroups and |H| = |K| = p is a prime number. Show that either H = K or $H \cap K = \{e\}$.
 - (b) Let G be a group and H_1, \ldots, H_k be distinct subgroups of G. Suppose that each group H_i has order p, a fixed prime number. Show that $H_1 \cup \ldots \cup H_k$ has exactly (p-1)k+1 elements.
- 6. Suppose G is a finite group and p is a prime number such that every element $g \in G \{e\}$ has order p. Show that $p 1 \mid |G| 1$. [Hint: use exercise 5.]
- 7. Let $G = \operatorname{GL}_2(\mathbb{R})$ and B the subgroup of upper triangular matrices. Show that

$$\operatorname{GL}_2(\mathbb{R}) = B \sqcup B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} B.$$

[Hint: Midterm exercise and example from class.]

Theorem 1 (Lifting the Exponent or LTE). For a prime p and an integer n we denote $v_p(n)$ the power of p in the factorization of n. E.g., $v_3(12) = 1$, $v_2(5/4) = -2$, etc. Suppose $a \equiv b \pmod{p}$ are two integers. Then

$$v_p(a^n - b^n) = v_p(a - b) + v_p(n).$$

- 8. Use LTE to show that $\operatorname{ord}(p+1 \mod p^n) = p^{n-1}$ for every odd prime p but $\operatorname{ord}(3 \mod 2^n) = 2^{n-2}$.
- 9. Suppose p > 2 is a prime. Let $a \in \mathbb{Z}$ be a generator of the cyclic group $(\mathbb{Z}/p\mathbb{Z})^{\times}$. Show that $a^{p^{n-1}}(1+p)$ is a generator of the (necessarily) cyclic group $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$.