Math 30810 Honors Algebra 3 Homework 5

Andrei Jorza

Due Wednesday, October 13

Do 5.

1. Artin 2.9.5.
2. Artin 2.9.7.
3. Let G be a group and $g \in G$. Suppose $g^{m}=e$ and $g^{n}=e$ where m and n are coprime integers. Show that $g=e$.
4. Compute $12^{34^{56^{78}}} \bmod 90$.
5. Let G be a group.
(a) Assume that H and K are subgroups and $|H|=|K|=p$ is a prime number. Show that either $H=K$ or $H \cap K=\{e\}$.
(b) Let G be a group and H_{1}, \ldots, H_{k} be distinct subgroups of G. Suppose that each group H_{i} has order p, a fixed prime number. Show that $H_{1} \cup \ldots \cup H_{k}$ has exactly $(p-1) k+1$ elements.
6. Suppose G is a finite group and p is a prime number such that every element $g \in G-\{e\}$ has order p. Show that $p-1| | G \mid-1$. [Hint: use exercise 5.]
7. Let $G=\mathrm{GL}_{2}(\mathbb{R})$ and B the subgroup of upper triangular matrices. Show that

$$
\mathrm{GL}_{2}(\mathbb{R})=B \sqcup B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) B
$$

[Hint: Midterm exercise and example from class.]
Theorem 1 (Lifting the Exponent or LTE). For a prime p and an integer n we denote $v_{p}(n)$ the power of p in the factorization of n. E.g., $v_{3}(12)=1, v_{2}(5 / 4)=-2$, etc. Suppose $a \equiv b(\bmod p)$ are two integers. Then

$$
v_{p}\left(a^{n}-b^{n}\right)=v_{p}(a-b)+v_{p}(n)
$$

8. Use LTE to show that $\operatorname{ord}\left(p+1 \bmod p^{n}\right)=p^{n-1}$ for every odd prime p but $\operatorname{ord}\left(3 \bmod 2^{n}\right)=2^{n-2}$.
9. Suppose $p>2$ is a prime. Let $a \in \mathbb{Z}$ be a generator of the cyclic group $(\mathbb{Z} / p \mathbb{Z})^{\times}$. Show that $a^{p^{n-1}}(1+p)$ is a generator of the (necessarily) cyclic group $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$.
