Math 30810 Honors Algebra 3 Homework 7

Andrei Jorza

Due in class on Wednesday, November 3

Do 5.

1. Let $n \geq 3$ be an integer. The dihedral group D_{n} with $2 n$ elements is

$$
D_{n}=\left\{1, R, R^{2}, \ldots, R^{n-1}, F, F R, \ldots, F R^{n-1}\right\}
$$

satisfying $\operatorname{ord}(R)=n, \operatorname{ord}(F)=2$ and $F R F=R^{n-1}$. Show that D_{n}, as described above, is a group. Moreover, show that it isomorphic to the subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z})$ consisting of matrices of the form $\left(\begin{array}{cc} \pm 1 & x \\ 0 & 1\end{array}\right)$ where $x \in \mathbb{Z} / n \mathbb{Z}$.
2. Consider D_{n} from the previous exercise. Suppose $a, b \in \mathbb{Z} / n \mathbb{Z}$. Show that R^{a} and $F R^{b}$ generate D_{n} (i.e., $D_{n}=\left\langle R^{a}, F R^{b}\right\rangle$) if and only if $a \in(\mathbb{Z} / n \mathbb{Z})^{\times}$. [Hint: Show that in an arbitrary product of R^{a}-s and $F R^{b}$-s and their inverses you can collect all the F-s on the left side.]
Recall from class that the matrices $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ generate $\operatorname{SL}(2, \mathbb{Z})$.
3. Find two integers $a, b \in \mathbb{Z}$ such that $A=\left(\begin{array}{cc}17 & 25 \\ a & b\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, and write A explicitly in $\langle S, T\rangle$, i.e., explicitly as a product of integral powers of S and T.
4. Show that $\operatorname{SL}(2, \mathbb{Z})=\langle S, S T\rangle$ and that these two generators S and $S T$ have orders 4 respectively 6 . This means that two elements of finite order can generate an infinite group.
5. Show that every homomorphism $f: \operatorname{SL}(2, \mathbb{Z}) \rightarrow \mathbb{C}^{\times}$has image $\operatorname{Im} f \subset \mu_{12}=\left\{z \in \mathbb{C}^{\times} \mid z^{12}=1\right\}$. [Hint: It's enough to see where the generators go.]
6. Write the permutation

$$
\left(\begin{array}{cccccccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
7 & 19 & 3 & 1 & 2 & 17 & 20 & 10 & 16 & 8 & 12 & 13 & 11 & 4 & 14 & 5 & 9 & 6 & 15 & 18
\end{array}\right) \in S_{20}
$$

as a product of disjoint cycles.
7. Consider the group homomorphism $f: \mathbb{Z}^{3} \rightarrow \mathbb{Z}$ given by $f(x, y, z)=3 x+4 y+5 z$. Show that f is surjective and find two vector $u, v \in \mathbb{Z}^{3}$ which generate $\operatorname{ker} f$.

