Math 30810 Honors Algebra 3 Homework 7

Andrei Jorza

Due in class on Wednesday, November 3

Do 5.

1. Let $n \geq 3$ be an integer. The dihedral group D_n with 2n elements is

$$D_n = \{1, R, R^2, \dots, R^{n-1}, F, FR, \dots, FR^{n-1}\}$$

satisfying $\operatorname{ord}(R) = n$, $\operatorname{ord}(F) = 2$ and $FRF = R^{n-1}$. Show that D_n , as described above, is a group. Moreover, show that it isomorphic to the subgroup of $\operatorname{GL}_2(\mathbb{Z}/n\mathbb{Z})$ consisting of matrices of the form $\begin{pmatrix} \pm 1 & x \\ 0 & 1 \end{pmatrix}$ where $x \in \mathbb{Z}/n\mathbb{Z}$.

2. Consider D_n from the previous exercise. Suppose $a, b \in \mathbb{Z}/n\mathbb{Z}$. Show that R^a and FR^b generate D_n (i.e., $D_n = \langle R^a, FR^b \rangle$) if and only if $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. [Hint: Show that in an arbitrary product of R^a -s and FR^b -s and their inverses you can collect all the *F*-s on the left side.]

Recall from class that the matrices $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ generate $SL(2, \mathbb{Z})$.

- 3. Find two integers $a, b \in \mathbb{Z}$ such that $A = \begin{pmatrix} 17 & 25 \\ a & b \end{pmatrix} \in SL_2(\mathbb{Z})$, and write A explicitly in $\langle S, T \rangle$, i.e., explicitly as a product of integral powers of S and T.
- 4. Show that $SL(2, \mathbb{Z}) = \langle S, ST \rangle$ and that these two generators S and ST have orders 4 respectively 6. This means that two elements of finite order can generate an infinite group.
- 5. Show that every homomorphism $f : \mathrm{SL}(2,\mathbb{Z}) \to \mathbb{C}^{\times}$ has image $\mathrm{Im} f \subset \mu_{12} = \{z \in \mathbb{C}^{\times} \mid z^{12} = 1\}$. [Hint: It's enough to see where the generators go.]
- 6. Write the permutation

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\ 7 & 19 & 3 & 1 & 2 & 17 & 20 & 10 & 16 & 8 & 12 & 13 & 11 & 4 & 14 & 5 & 9 & 6 & 15 & 18 \end{pmatrix} \in S_{20}$

as a product of disjoint cycles.

7. Consider the group homomorphism $f : \mathbb{Z}^3 \to \mathbb{Z}$ given by f(x, y, z) = 3x + 4y + 5z. Show that f is surjective and find two vector $u, v \in \mathbb{Z}^3$ which generate ker f.