Math 30810 Honors Algebra 3 Homework 8

Andrei Jorza

Due in class Wednesday, November 17

Do 5.

- 1. Show that (ij) and (12...n) generate S_n if and only if (i-j,n) = 1.
- 2. Artin 7.2.15
- 3. Artin 7.2.17
- 4. Artin 7.3.3
- 5. Artin 7.5.7
- 6. Artin 7.5.12
- 7. Let $n \geq 5$.
 - (a) Suppose $\sigma = c_1 c_2 \cdots c_r \in S_n$ is a product of disjoint cycles with c_1 of length ≥ 3 . Find $\tau \in S_n$ such that $\tau \sigma \tau^{-1} \sigma^{-1}$ is a 3-cycle.
 - (b) Suppose $\sigma = c_1 c_2 \cdots c_r \in S_n$ is a product of disjoint transpositions with $r \ge 1$. Find $\tau \in S_n$ such that $\tau \sigma \tau^{-1} \sigma^{-1}$ is a product of 2 disjoint transpositions.
 - (c) Suppose $\sigma = c_1 c_2$ is a product of disjoint transpositions. Find $\tau \in S_n$ such that $\tau \sigma \tau^{-1} \sigma^{-1}$ is a 3-cycle.
 - (d) Let $N \triangleleft S_n$. Show that if $N \neq \{1\}$ then $N \supset A_n$, and therefore that $N = A_n$ or $N = S_n$. [Hint: Recall from class that 3-cycles generate A_n .]
- 8. Enumerate the orbits of $SL_2(\mathbb{Z})$ on $\mathbb{Z}^2 \{0\}$.
- 9. Suppose G acts on X. Show that for each $g \in G$, $x \in X$, $\operatorname{Stab}_G(gx) = g \operatorname{Stab}_G(x)g^{-1}$.
- 10. Let G be a group, H < G and $N \lhd G$ such that $H \cap N = \{1\}$.
 - (a) Show that the multiplication map $N \times H \to NH$ is a bijection of sets.
 - (b) Find a homomorphism $\phi : H \to \operatorname{Aut}(N)$ such that the above multiplication map gives an isomorphism of groups $N \rtimes_{\phi} H \cong NH$.