Math 30810 Honors Algebra 3 Homework 8

Andrei Jorza

Due in class Wednesday, November 17

Do 5.

1. Show that $(i j)$ and $(12 \ldots n)$ generate S_{n} if and only if $(i-j, n)=1$.
2. Artin 7.2.15
3. Artin 7.2.17
4. Artin 7.3.3
5. Artin 7.5.7
6. Artin 7.5.12
7. Let $n \geq 5$.
(a) Suppose $\sigma=c_{1} c_{2} \cdots c_{r} \in S_{n}$ is a product of disjoint cycles with c_{1} of length ≥ 3. Find $\tau \in S_{n}$ such that $\tau \sigma \tau^{-1} \sigma^{-1}$ is a 3 -cycle.
(b) Suppose $\sigma=c_{1} c_{2} \cdots c_{r} \in S_{n}$ is a product of disjoint transpositions with $r \geq 1$. Find $\tau \in S_{n}$ such that $\tau \sigma \tau^{-1} \sigma^{-1}$ is a product of 2 disjoint transpositions.
(c) Suppose $\sigma=c_{1} c_{2}$ is a product of disjoint transpositions. Find $\tau \in S_{n}$ such that $\tau \sigma \tau^{-1} \sigma^{-1}$ is a 3-cycle.
(d) Let $N \triangleleft S_{n}$. Show that if $N \neq\{1\}$ then $N \supset A_{n}$, and therefore that $N=A_{n}$ or $N=S_{n}$. [Hint: Recall from class that 3 -cycles generate A_{n}.]
8. Enumerate the orbits of $\mathrm{SL}_{2}(\mathbb{Z})$ on $\mathbb{Z}^{2}-\{0\}$.
9. Suppose G acts on X. Show that for each $g \in G, x \in X, \operatorname{Stab}_{G}(g x)=g \operatorname{Stab}_{G}(x) g^{-1}$.
10. Let G be a group, $H<G$ and $N \triangleleft G$ such that $H \cap N=\{1\}$.
(a) Show that the multiplication map $N \times H \rightarrow N H$ is a bijection of sets.
(b) Find a homomorphism $\phi: H \rightarrow \operatorname{Aut}(N)$ such that the above multiplication map gives an isomorphism of groups $N \rtimes_{\phi} H \cong N H$.
