Math 30810 Honors Algebra 3 Second Midterm

Andrei Jorza

November 10, 2021

Do 5.

1. Suppose $n \geq 5$. Show that there are exactly 4 homomorphisms $S_{n} \rightarrow(\mathbb{Z} / 2 \mathbb{Z})^{2}$.
2. What is the order of the automorphism group $\operatorname{Aut}(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z})$?
3. Show that (123) and (132) are not conjugate in A_{3} or A_{4}, but are conjugate in S_{3}.
4. Let G be a group such that $G / Z(G)$ is a cyclic group. Show that G is abelian.
5. (a) Show that $(12 \ldots n)(i, i+1)(12 \ldots n)^{-1}=(i+1, i+2)$ for $i+2 \leq n$.
(b) Show that $(12 \ldots n)^{k}(12)(12 \ldots n)^{-k}=(k+1, k+2)$ for $k+2 \leq n$.
(c) Deduce that S_{n} is generated by (12) and $(12 \ldots n)$.
6. Let $\zeta=e^{2 \pi i / 3}, x=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $y=\left(\begin{array}{cc}\zeta & 0 \\ 0 & \zeta^{-1}\end{array}\right)$. Let $G=\langle x, y\rangle \subset \mathrm{GL}(2, \mathbb{C})$ be the subgroup generated by x and y.
(a) Show that x has order $4, y$ has order 3 and $x y=y^{2} x$.
(b) Show that G has order 12 with $G=\left\{y^{b} x^{a} \mid 0 \leq a<4,0 \leq b<3\right\}$, but $G \not \approx A_{4}$.
7. Let G be any group. Show that $\operatorname{Inn}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$.
8. Let $H<G$ be groups such that $[G: H]$ is a prime number. Show that if $H<K<G$ is an intermediary subgroup, then $K=H$ or $K=G$. Deduce that if $A_{n}<G<S_{n}$ then $G=A_{n}$ or $G=S_{n}$.
9. Find all normal subgroups of D_{4}. (There are 10 subgroups of D_{4} of which 6 are normal.)
