Math 30810 Honors Algebra 3 Second Midterm

Andrei Jorza

November 10, 2021

Do 5.

- 1. Suppose $n \ge 5$. Show that there are exactly 4 homomorphisms $S_n \to (\mathbb{Z}/2\mathbb{Z})^2$.
- 2. What is the order of the automorphism group $\operatorname{Aut}(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/4\mathbb{Z})$?
- 3. Show that (123) and (132) are not conjugate in A_3 or A_4 , but are conjugate in S_3 .
- 4. Let G be a group such that G/Z(G) is a cyclic group. Show that G is abelian.
- 5. (a) Show that $(12...n)(i, i+1)(12...n)^{-1} = (i+1, i+2)$ for $i+2 \le n$.
 - (b) Show that $(12...n)^k (12)(12...n)^{-k} = (k+1, k+2)$ for $k+2 \le n$.
 - (c) Deduce that S_n is generated by (12) and (12...n).
- 6. Let $\zeta = e^{2\pi i/3}$, $x = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $y = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix}$. Let $G = \langle x, y \rangle \subset \operatorname{GL}(2, \mathbb{C})$ be the subgroup generated by x and y.
 - (a) Show that x has order 4, y has order 3 and $xy = y^2 x$.
 - (b) Show that G has order 12 with $G = \{y^b x^a \mid 0 \le a < 4, 0 \le b < 3\}$, but $G \not\cong A_4$.
- 7. Let G be any group. Show that Inn(G) is a normal subgroup of Aut(G).
- 8. Let H < G be groups such that [G : H] is a prime number. Show that if H < K < G is an intermediary subgroup, then K = H or K = G. Deduce that if $A_n < G < S_n$ then $G = A_n$ or $G = S_n$.
- 9. Find all normal subgroups of D_4 . (There are 10 subgroups of D_4 of which 6 are normal.)