Math 43900 Problem Solving
 Fall 2021
 Lecture 10 Matrices

Andrei Jorza

Evan O'Dorney

These problems are taken from the textbook, from Engel's Problem solving strategies, from Ravi Vakil's Putnam seminar notes and from Po-Shen Loh's Putnam seminar notes.

1 Matrices

Overview

The way matrices show up in problem solving problems involves the following three main themes:

1. algebraic manipulations of matrices (they can be multiplied and the operation is not commutative),
2. determinants and eigenvalues of matrices,
3. matrices as defining linear maps on vector spaces.

Basic results

1. You can always add two $m \times n$ matrices.
2. You can always multiply an $m \times n$ matrix and an $n \times p$ matrix to get an $m \times p$ matrix.
3. The trace of a matrix $\operatorname{Tr} A$ is the sum of its diagonal terms. It has the property that $\operatorname{Tr}(A+B)=$ $\operatorname{Tr}(A)+\operatorname{Tr}(B)$ and $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ for all matrices A and B.
4. The determinant of a matrix $\operatorname{det} A$ is a polynomial expression in the entries of the matrix A and satisfies the following properties:
(a) The determinant of $\left(a_{i j}\right)$ is $\sum_{\sigma \in S_{n}} \varepsilon(\sigma) \prod_{i=1}^{n} a_{i, \sigma(i)}$, where S_{n} is the group of permutations and $\varepsilon(\sigma)$ is the sign. The sign ε is multiplicative and if τ is a k-cycle then $\varepsilon(\tau)=(-1)^{k-1}$.
(b) If in a matrix $A=\left(a_{i j}\right)$ you write $A_{p, q}$ for the $(n-1) \times(n-1)$ where you eliminate the p-th row and q-th column from A then

$$
\operatorname{det}(A)=a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+\cdots+(-1)^{n-1} a_{1, n} \operatorname{det} A_{1, n}
$$

(c) A is invertible if and only if $\operatorname{det} A \neq 0$.
(d) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ for all matrices A and B.
(e) If you swap two rows or columns of a matrix A to obtain a matrix B then $\operatorname{det}(B)=-\operatorname{det}(A)$.
(f) If in a matrix A you add a multiple of one row to a different row to get a matrix B then $\operatorname{det}(B)=\operatorname{det}(A)$. The same is true if you add a multiple of a column to a different column.
5. Suppose A is an $n \times n$ matrix. If you can find a nonzero vector v (i.e., an $n \times 1$ matrix consisting of a single column) and a scalar α such that $A v=\alpha v$ then α is said to be an eigenvalue of A with eigenvector v.
6. If A is an $n \times n$ matrix the characteristic polynomial of A is the monic degree n polynomial

$$
P_{A}(X)=\operatorname{det}\left(X I_{n}-A\right)
$$

(a) A scalar α is an eigenvalue of A if and only if it is a root of $P_{A}(X)$. The roots of $P_{A}(X)$ are the eigenvalues of A and are counted with multiplicity if they are not distinct. E.g., I_{n} has n eigenvalues all equal to 1 .
(b) $P_{A}(X)=X^{n}-(\operatorname{Tr} A) X^{n-1}+\cdots+(-1)^{n} \operatorname{det}(A)$.
(c) Since we know the relation between the coefficients of a polynomial and its roots we deduce that if $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A then

$$
\begin{aligned}
\operatorname{Tr}(A) & =\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n} \\
\operatorname{det}(A) & =\lambda_{1} \lambda_{2} \cdots \lambda_{n}
\end{aligned}
$$

(d) The Cayley-Hamilton theorem: If you plug A into the polynomial $P_{A}(X)$ you always get the 0 matrix, $P_{A}(A)=O$.
(e) If A and B are matrices then $P_{A B}(X)=P_{B A}(X)$ as polynomials.
7. A big result in linear algebra says that for any matrix A (over \mathbb{C}) you can find an invertible matrix S such that the conjugate $S A S^{-1}$ has a very special shape: the Jordan canonical form. In fact the Jordan canonical form $S A S^{-1}$ has the n eigenvalues on the diagonal but much more is true: $S A S^{-1}$ is block diagonal and each block is of the form

$$
\left(\begin{array}{cccc}
\lambda & 1 & 0 & \ldots \\
0 & \lambda & 1 & \ldots \\
& & \ddots & \ddots \\
0 & \ldots & 0 & \lambda
\end{array}\right)
$$

with an eigenvalue λ on the diagonal and 1-s off diagonal. E.g., for a 2×2 matrix the possible Jordan canonical forms are

$$
\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) \text { for } \lambda_{1} \neq \lambda_{2} \text { and }\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right) \text { or }\left(\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right)
$$

8. (VERY USEFUL) Suppose A is an $n \times n$ matrix and $Q(X)$ is any polynomial. If the eigenvalues of A are $\lambda_{1}, \ldots, \lambda_{n}$ then the eigenvalues of $Q(A)$ (also an $n \times n$ matrix) are $Q\left(\lambda_{1}\right), \ldots, Q\left(\lambda_{n}\right)$.

2 Problems

2.1 Determinants, traces, characteristic polynomials and eigenvalues

Easier

1. (Putnam 1978) Let $a \neq b$ and p_{1}, \ldots, p_{n} be real numbers, and let $F(X)=\left(p_{1}-X\right) \cdots\left(p_{n}-X\right)$. Let M be the $n \times n$ matrix which has p_{1}, \ldots, p_{n} on the diagonal, a above the diagonal, and below the diagonal. Show that

$$
\operatorname{det} M=\frac{b F(a)-a F(b)}{b-a}
$$

2. (Putnam 1969) Show that $\operatorname{det}(|i-j|)_{1 \leq i, j \leq n}=(-1)^{n-1}(n-1) 2^{n-2}$.
3. Let D_{n} be the $(n-1) \times(n-1)$ determinant that has $3,4, \ldots, n+1$ on the diagonal and 1 's everywhere else. Show that $\left\{D_{n} / n!\right\}$ is unbounded.

Harder

4. (Putnam 1984) Let $M(x)=\left(m_{i, j}\right)$ be the $2 n \times 2 n$ matrix with entries $m_{i, j}=x$ if $i=j, m_{i, j}=a$ if $i \neq j$ and $i+j$ is even, and $m_{i, j}=b$ if $i \neq j$ and $i+j$ is odd. Compute $\lim _{x \rightarrow a} \frac{\operatorname{det} M(x)}{(x-a)^{2 n-2}}$.
5. (Putnam 1985) Let $G=\left\{M_{1}, \ldots, M_{r}\right\}$ be a finite set of $n \times n$ matrices which form a group under matrix multiplication. Suppose $\sum_{i=1}^{r} \operatorname{Tr}\left(M_{i}\right)=0$. Show that $\sum_{i=1}^{r} M_{i}=0_{n \times n}$.

2.2 Algebraic operations and linear algebra

Easier

6. Compute $\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)^{n}$ and $\left(\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right)^{n}$ for all n.
7. Suppose $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$ is a converging power series. Show that $f\left(S A S^{-1}\right)=S f(A) S^{-1}$.

Harder

8. (Putnam 1986) Let A, B, C, D be $n \times n$ matrices with complex entries such that: $A B^{t}$ and $C D^{t}$ are symmetric and $A D^{t}-B C^{t}=I_{n}$. Show that $A^{t} D-C^{t} B=I_{n}$.
9. (Putnam 1987) Let M be a $2 n \times n$ matrix with complex entries such that whenever $\left(z_{1}, \ldots, z_{2 n}\right) M=$ $O_{1 \times n}$ with complex z_{i}, not all 0 , then at least one z_{i} is not real. Show that for any real $r_{1}, \ldots, r_{2 n}$ there exist complex z_{1}, \ldots, z_{n} such that $\operatorname{Re}\left(M\left(z_{1}, \ldots, z_{n}\right)^{t}\right)=\left(r_{1}, \ldots, r_{2 n}\right)^{t}$.

2.3 Extra problems

Easier

10. Show that you can never find two $n \times n$ matrices A and B with real coefficients such that $A B-B A=I_{n}$.
11. Consider an $n \times(n+1)$ matrix $A=\left(a_{i j}\right)$. For a column k write A_{k} for the $n \times n$ matrix you obtain from A by removing the k-th column. Show that

$$
a_{11} \operatorname{det} A_{1}-a_{12} \operatorname{det} A_{2}+\cdots+(-1)^{n+1} a_{1, n+1} \operatorname{det} A_{n+1}=0
$$

12. Suppose $P(X)$ is a polynomial and A is an $n \times n$ matrix such that $P(A)=0$. Show that the eigenvalues of A are among the roots of $P(X)$.
13. This is an application of Exercise 19. Suppose X is an antisymmetric matrix, i.e., of the form $X=-X^{t}$. (Think $\left(\begin{array}{cc} & x \\ -x & \end{array}\right)$.) Show that every eigenvalue of X is of the form $a i$ where $i=\sqrt{-1}$ and $a \in \mathbb{R}$.
14. Show that $A^{k}=0$ for some $k \geq 0$ if and only if all the eigenvalues of A are 0 in which case $A^{n}=0$ as well.
15. (Putnam 1994) Let A and B be 2 by 2 matrices with integer entries such that $A, A+B, A+2 B, A+3 B$ and $A+4 B$ are all invertible matrices whose inverses have integer entries. Show that $A+5 B$ is invertible and that its inverse has integer entries.
16. Let $p<m$ be positive integers. Show that

$$
\operatorname{det}\left(\begin{array}{cccc}
\binom{m}{0} & \binom{m}{1} & \ldots & \binom{m}{p} \\
\binom{m+1}{0} & \binom{m+1}{1} & \ldots & \binom{m+1}{p} \\
\vdots & \vdots & \ddots & \vdots \\
\binom{m+p}{0} & \binom{m+p}{1} & \ldots & \binom{m+p}{p}
\end{array}\right)=1 .
$$

17. Suppose $\left(x_{n}\right)$ is a sequence defined by the linear recurrence $x_{n+2}=a x_{n+1}+b x_{n}$ for all $n \geq 0$. Show that

$$
\binom{x_{n+2}}{x_{n+1}}=\left(\begin{array}{ll}
a & b \\
1 & 0
\end{array}\right)\binom{x_{n+1}}{x_{n}}
$$

and conclude that for $n \geq 1, x_{n}$ is the first entry of the matrix $\left(\begin{array}{ll}a & b \\ 1 & 0\end{array}\right)^{n-1}\binom{x_{1}}{x_{0}}$.
18. A useful application of Exercise 6. Show that if $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$ is an absolutely convergent power series then $f\left(\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)\right)=\left(\begin{array}{cc}f\left(\lambda_{1}\right) & 0 \\ 0 & f\left(\lambda_{2}\right)\end{array}\right)$ and $f\left(\left(\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right)\right)=\left(\begin{array}{cc}f(\lambda) & f^{\prime}(\lambda) \\ 0 & f(\lambda)\end{array}\right)$.
19. If u and v are $n \times 1$ column matrices write $\langle u, v\rangle=u^{t} v$ for the dot product of the two vectors. If A is an $n \times n$ matrix show that $\langle u, A v\rangle=\left\langle A^{t} u, v\right\rangle$. Show that $\langle v, \bar{v}\rangle \geq 0$, where \bar{v} is the complex conjugate of v.
20. If $A=\left(a_{i j}\right)$ show that $\operatorname{Tr}\left(A \cdot A^{t}\right)=\sum_{i, j} a_{i j}^{2}$.

Harder

21. Suppose A is an $n \times n$ real matrix such that $A^{2}=A+I_{n}$. Show that $\operatorname{det}(A)<2^{n}$. In fact show that $\operatorname{det}(A) \leq\left(\frac{1+\sqrt{5}}{2}\right)^{n}$.
22. Suppose X is a real matrix with $X+X^{t}=I_{n}$. Show that $\operatorname{det} X \geq \frac{1}{2^{n}}$.
23. Compute the determinant of the matrix $\left(a_{i j}\right)$ where $a_{i i}=2$ and if $i \neq j$ then $a_{i j}=(-1)^{i-j}$.
24. Let A and B be 3×3 matrices with real entries such that $\operatorname{det} A=\operatorname{det} B=\operatorname{det}(A+B)=\operatorname{det}(A-B)=0$. Show that $\operatorname{det}(x A+y B)=0$ for all real numbers x, y.
25. Let n be an odd positive integer. Suppose A is an $n \times n$ matrix whose square A^{2} is either 0 or I_{n}. Show that $\operatorname{det}\left(A+I_{n}\right) \geq \operatorname{det}\left(A-I_{n}\right)$.
26. Suppose A and B are commuting $n \times n$ matrices with real entries such that $\operatorname{det}(A+B) \geq 0$. Show that $\operatorname{det}\left(A^{k}+B^{k}\right) \geq 0$ for all $k \geq 1$.
27. (Putnam 1996) Show that there exists no complex matrix A such that $\sin (A)=\left(\begin{array}{cc}1 & 1996 \\ 0 & 1\end{array}\right)$.
28. Suppose A and B are $n \times n$ real matrices such that $\operatorname{Tr}\left(A \cdot A^{t}+B \cdot B^{t}\right)=\operatorname{Tr}\left(A \cdot B+A^{t} \cdot B^{t}\right)$. Show that $A=B^{t}$.
