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Lecture 11 Inequalities

Andrei Jorza Evan O’Dorney

These problems are taken from the textbook, from Engel’s Problem solving strategies,
from Ravi Vakil’s Putnam seminar notes and from Po-Shen Loh’s Putnam seminar notes.

1 Basics

Inequalities are a frequent and difficult topic on math competitions, and they are at the
core of a huge number of results in analysis. Problem solving inequalities tend to be on
the tricky side with ingenious algebra necessary to reduce them to some known inequali-
ties. Nevertheless a handful of basic examples can be helpful in proving a large number of
inequalities.

The basic inequalities:

1. By far the most useful inequality is that x2 ≥ 0 for all x real.

2. AM-GM: If x1, . . . , xn ≥ 0 then

x1 + x2 + · · ·+ xn
n

≥ n
√
x1x2 · · ·xn

with equality when x1 = x2 = . . . = xn.

3. Cauchy-Schwarz: If x1, . . . , xn, y1, . . . , yn are real numbers then

(x21 + x22 + · · ·+ x2n)(y21 + y22 + · · ·+ y2n) ≥ (x1y1 + x2y2 + · · ·+ xnyn)2

with equality when x1 = λy1, x2 = λy2, . . . , xn = λyn for a scalar λ.

4. Chebyshev’s inequality: If x1 ≤ x2 ≤ . . . ≤ xn and y1 ≤ y2 ≤ . . . ≤ yn then

x1y1 + x2y2 + · · ·+ xnyn ≥ x1yσ(1) + x2yσ(2) + · · ·+ xnyσ(n) ≥ x1yn + x2yn−1 + · · ·+ xny1

for any permutation σ. The idea of the proof is that in a sum of the form
∑
aibi if you

interchange bi and bi+1 then sum grows if and only if (ai − ai+1)(bi − bi+1) < 0.

Needless to say you may use any method from calculus to show inequalities, from minimiza-
tion/maximization to Lagrange multipliers. Typically, however, reducing inequalities to the
basic ones via algebraic manipulations is the most effective strategy. Brute force methods
sometimes work, but they are very laborious.

Inequalities come is lots of guises but the following are major themes in problem solving:
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1. Inequalities based on AM-GM

2. Inequalities based on Cauchy-Schwarz

3. Inequalities in geometry, where a useful fact is the triangle inequality.

4. Inequalities in calculus

2 Problems

2.1 AM-GM, Completing the square, Cauchy-Schwarz, Chebyshev

Easier

1. (Putnam 1985) Let T be an acute triangle. Inscribe a rectangle R in T with one side
along a side of T . Then inscribe a rectangle S in the triangle formed by the side of R
opposite the side on the boundary of T , and the other two sides of T , with one side
along the side of R. For any polygon X, let A(X) denote the area of X. Find the

maximum value, or show that no maximum exists, of A(R)+A(S)
A(T )

, where T ranges over

all triangles and R, S over all rectangles as above.

2. Find the maximum of the function f(x, y, z) = 5x−6y+ 7z on the ellipsoid 2x2 + 3y2 +
4z2 ≤ 1.

3. If a1 + a2 + · · ·+ an = n, show that a41 + a42 + · · ·+ a4n ≥ n.

Harder

4. (Putnam 1977) Suppose a1, . . . , an are real numbers and A is a real number such that

A+
n∑
i=1

a2i <
1

n− 1

(
n∑
i=1

ai

)2

.

Show that A < 2aiaj for all i 6= j.

5. (Putnam 1996) Given that {x1, x2, . . . , xn} = {1, 2, . . . , n} find, with proof, the largest
possible value of

x1x2 + x2x3 + · · ·+ xn−1xn + xnx1.

2.2 Inequalities in calculus and geometry

Easier

6. (Putnam 1966) Let a, b, c be the lengths of the three sides of a triangle, let s = (a+ b+
c)/2, and r be the radius of the inscribed circle. Show that

1

(s− a)2
+

1

(s− b)2
+

1

(s− c)2
≥ 1

r2
.
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7. (Putnam 1967) Let f(x) =
n∑
k=1

ak sin(kx) where a1, . . . , an are real numbers. Given that

|f(x)| ≤ |sin(x)| for all x show that |a1 + 2a2 + · · ·+ nan| ≤ 1.

8. (Putnam 1988) Prove or disprove: if x and y are real numbers with y ≥ 0 and y(y+1) ≤
(x+ 1)2 then y(y − 1) ≤ x2.

Harder

9. (Putnam 1967) Let f(x, y) be a real-valued function on the unit disc D = {(x, y) |
x2 + y2 ≤ 1}. Suppose |f(x, y)| ≤ 1 on D and f has partial derivatives everywhere in
D. Show that at some point (x0, y0) in the interior of D, |fx(x0, y0)|2+|fy(x0, y0)|2 ≤ 16.

10. (Putnam 1972) Let n1 < n2 < . . . < nk be positive integers. Show that P (z) =

1 + zn1 + · · ·+ znk has no roots in the circle |z| <
√
5−1
2

.

2.3 Miscellaneous

Easier

11. (VTRMC 2017) Determine the number of real solutions to the equation
√

2− x2 =
3
√

3− x3.

12. (Putnam 1996) Show that for all positive integers n,(
2n− 1

e

) 2n−1
2

< 1 · 3 · 5 · · · (2n− 1) <

(
2n+ 1

e

) 2n+1
2

.

Harder

13. (Putnam 1971) Let δ(m) be the largest odd divisor of m. Show that for all integers
n ≥ 1: ∣∣∣∣∣

n∑
k=1

δ(k)

k
− 2n

3

∣∣∣∣∣ ≤ 1.

2.4 Extra problems

Easier

14. Show that for all real numbers x,

2x + 3x − 4x + 6x − 9x ≤ 1.

15. Show that x4 + 4x + 3 ≥ 0 for all real x. Find all positive integers n such that the
equation

nx4 + 4x+ 3 = 0

has a real root.
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16. Show that the positive real numbers a0, a1, . . . , an form a geometric progression if and
only if

(a0a1 + a1a2 + · · ·+ an−1an)2 = (a20 + a21 + · · ·+ a2n−1)(a
2
1 + a22 + · · ·+ a2n).

17. Suppose f, g : [0, 1]→ R are continuous functions. Show that∫ 1

0

f(x)2dx

∫ 1

0

g(x)2dx ≥
(∫ 1

0

f(x)g(x)dx

)2

.

18. (VTRMC 2017) Find all nonnegative integers m and n such that m2+2 ·3n = m(2n+1−
1).

Harder

19. Suppose x1, . . . , xn ∈ (1/4, 1). Show that

logx1(x2 − 1/4) + logx2(x3 − 1/4) + · · ·+ logxn(x1 − 1/4) ≥ 2n.

20. Suppose a1, . . . , an are real numbers such that a1+· · ·+an ≥ n2 and a21+· · ·+a2n ≤ n3+1.
Show that a1, . . . , an ∈ [n− 1, n+ 1].

21. Consider real numbers x0 > x1 > x2 > · · · > xn. Show that

x0 +
1

x0 − x1
+

1

x1 − x2
+ · · ·+ 1

xn−1 − xn
≥ xn + 2n.

22. Show that if 0 < a, b < π/2 then

sin3 a

sin b
+

cos3 a

cos b
≥ sec(a− b).

23. Find all positive integers n, k1, . . . , kn such that k1 + · · ·+ kn = 5n− 4 and

1

k1
+ · · ·+ 1

kn
= 1.

24. Show that in a triangle with sides a, b, c and area A one has

a2 + b2 + c2 ≥ 4
√

3A.

25. (Romanian National 1999) Find all positive real x, y such that
4−x + 27−y = 5

6

27y − 4x ≤ 1

log27 y − log4 x ≥ 1
6
.
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