Math 43900 Problem Solving Fall 2021 Lecture 12: Functional equations

Andrei Jorza Evan O'Dorney

These problems are taken from the textbook, from Engel's *Problem solving strategies*, from Ravi Vakil's Putnam seminar notes and from Po-Shen Loh's Putnam seminar notes.

1 Functions and functional equations

In physics and calculus, you've seen differential equations where you were supposed to determine a particular function f(x) satisfying a particular equation involving differentials. These are special examples of "functional equations", i.e., problems where you were supposed to determine a particular function f(x) given only an equation satisfied by f(x). They are a popular topic in math contests and solving them requires ingenuity and playfulness.

Example 1 (Cauchy's functional equation). The most classical example of a simple (nondifferential) functional equation is to determine functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x, y \in \mathbb{R}$:

$$f(x+y) = f(x) + f(y)$$

As it stands the example has countless solutions (and I mean it in a technical way, there are uncountably many solutions). However, assuming mild properties of f(x) one can show that f(x) = ax for a fixed $a \in \mathbb{R}$ are the only solutions. This is the case when f(x) is assumed to be continuous, or even integrable.

Remark 1. A large number of functional equations can be reduced to Cauchy's functional equation via alegbraic manipulations.

I identified 3 main topics:

- 1. Functional equations with integers, where you use the fact that the integers are discrete.
- 2. Functional equations over \mathbb{R} where you use algebraic manipulations.
- 3. Functional equations over \mathbb{R} where you use analytic properties of f(x), such that continuity or differentiability or integrability.

2 Problems

2.1 Functional equations and the integers

Easier

- 1. (Putnam 1992) Show that f(n) = 1 n is the only integer-valued function defined on the integers that satisfies the following conditions:
 - (a) f(f(n)) = n for all integers n
 - (b) f(f(n+2)+2) = n for all integers n
 - (c) f(0) = 1.

Harder

- 2. Suppose $f : \mathbb{Z}_{\geq 1} \to \mathbb{Z}_{\geq 1}$ satisfies f(n+1) > f(f(n)) for all $n \geq 1$.
 - (a) Show that f(1) is the minimum value of f.
 - (b) Show that $f(1) < f(2) < f(3) < \dots$
 - (c) Show that f(n) > n can never happen.
 - (d) Deduce that f(n) = n for all n.

2.2 Functional equations and algebraic manipulations

Easier

3. (Putnam 1971) Let f(x) be a function defined on real numbers except 0 and 1. Find f(x) knowing that it satisfies f(x) + f(1 - 1/x) = 1 + x.

Harder

- 4. (Putnam 1988) Show that there exists a unique function $f(x): (0, \infty) \to (0, \infty)$ such that f(f(x)) = 6x f(x) for all x > 0.
- 5. (Putnam 1996) Let $c \ge 0$ be a constant. Give a complete description of the set of continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) = f(x^2 + c)$ for all $x \in \mathbb{R}$.

2.3 Functional equations and calculus

Easier

- 6. (Putnam 1971) Find all polynomials P(x) such that $P(x^2 + 1) = P(x)^2 + 1$ and P(0) = 0.
- 7. (Putnam 1991) Suppose f and g are nonconstant differentiable real-valued functions on \mathbb{R} . Also suppose that for all x, y real,

$$f(x+y) = f(x)f(y) - g(x)g(y)$$

$$g(x+y) = f(x)g(y) + g(x)f(y)$$

If f'(0) = 0 show that $f(x)^2 + g(x)^2 = 1$ for all x.

Harder

8. (Putnam 2000) Let $f : [-1,1] \to \mathbb{R}$ be a continuous function such that $f(2x^2 - 1) = 2xf(x)$ for all x. Show that f(x) = 0 for all x.

2.4 Extra problems

Easier

- 9. Suppose $f : \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0}$ satisfies f(f(n)) = n + 3 for all integers $n \geq 0$.
 - (a) Show that f(n+3) = f(n) + 3.
 - (b) Deduce that f(3k) = 3k + f(0), f(3k+1) = 3k + f(1) and f(3k+2) = 3k + f(2) for all nonnegative integers k.
 - (c) Show that $f(f(n)) \equiv n \pmod{3}$ and conclude that either $f(x) \equiv x \pmod{3}$ for at least one of $x \in \{0, 1, 2\}$.

- (d) Deduce that no such function f(n) exists.
- 10. Suppose $f: \mathbb{Q}_{>0} \to \mathbb{Q}_{>0}$ satisfies $f(xf(y)) = \frac{f(x)}{y}$ for all $x, y \in \mathbb{Q}_{>0}$.
 - (a) Show that f(f(y)) = f(1)/y, that f(f(1)) = 1 and deduce that f(1) = 1.
 - (b) Deduce that f(f(y)) = 1/y and show that f(1/y) = 1/f(y).
 - (c) Show that f(x/y) = f(x)/f(y).
 - (d) Deduce that f(xy) = f(x)f(y) for all x, y.
 - (e) Can you find ONE example of such f?
- 11. Suppose $f : \mathbb{R} \to \mathbb{R}$ satisfies f(0) = 1/2 and there is some real α for which

$$f(x+y) = f(x)f(\alpha - y) + f(y)f(\alpha - x)$$

for all $x, y \in \mathbb{R}$.

- (a) Show that $f(\alpha) = 1/2$.
- (b) Show that $f(\alpha x) = f(x)$ for all x.
- (c) Show that $f(x) = \pm 1/2$ for all x.
- (d) Show that in fact f(x) = 1/2 for all x.
- (e) Suppose we drop the assumption that f(0) = 1/2. Can you find a nonconstant solution to the functional equation?
- 12. Suppose $f : \mathbb{R} \to \mathbb{R}$ satisfies xf(y) + yf(x) = (x+y)f(x)f(y). Show that for every $x \in \mathbb{R}$ we have $f(x) \in \{0,1\}$. Can you show that f is an even function?
- 13. Suppose $f : \mathbb{R} \to \mathbb{R}$ satisfies f(x)f(y) = f(x-y) for all x, y and also suppose that f is not the 0 function. Show that f(0) = 1 and that for every $x \in \mathbb{R}$, $f(x) \in \{-1, 1\}$.
- 14. For each of the following functional equations find all continuous f(x) that satisfy the equation:
 - (a) f(x+y) = f(x)f(y) with $f : \mathbb{R} \to (0, \infty)$.
 - (b) f(x+y) = f(x) + f(y) + f(x)f(y).
 - (c) f(xy) = f(x) + f(y) for $f: (0, \infty) \to \mathbb{R}$.
 - (d) f(xy) = xf(y) + yf(x) for $f: (0, \infty) \to \mathbb{R}$.

Harder

- 15. Determine all functions $f : [0, \infty) \to [0, \infty)$ satisfying the following properties: (a) f(2) = 0, (b) if $x \in [0, 2)$ then $f(x) \neq 0$, and (c) if $x, y \in [0, \infty)$ then f(x + y) = f(xf(y))f(y).
- 16. Find the polynomials P(X) such that P(X+1) = P(X) + 2X + 1.
- 17. (Putnam 2016) Find all functions $f: (1, \infty) \to (1, \infty)$ with the following property: if $x, y \in (1, \infty)$ and $x^2 \le y \le x^3$ then $(f(x))^2 \le f(y) \le (f(x))^3$.
- 18. Determine the continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that f(x+y) = f(x)f(y). [Hint: Can you reduce to Exercise 14(a)?]
- 19. Find the continuous functions $f : \mathbb{R} \to \mathbb{R}$ satisfying the functional equation

$$f\left(\frac{x+y}{2}\right) = \frac{f(x)+f(y)}{2}$$

20. Determine the continuous functions $f : \mathbb{R} \to \mathbb{R}_{\neq 0}$ such that for all x, y,

$$f(x+y) = \frac{f(x)f(y)}{f(x) + f(y)}$$