Math 43900 Problem Solving
 Fall 2021
 Lecture 12: Functional equations

Andrei Jorza Evan O'Dorney

These problems are taken from the textbook, from Engel's Problem solving strategies, from Ravi Vakil's Putnam seminar notes and from Po-Shen Loh's Putnam seminar notes.

1 Functions and functional equations

In physics and calculus, you've seen differential equations where you were supposed to determine a particular function $f(x)$ satisfying a particular equation involving differentials. These are special examples of "functional equations", i.e., problems where you were supposed to determine a particular function $f(x)$ given only an equation satisfied by $f(x)$. They are a popular topic in math contests and solving them requires ingenuity and playfulness.
Example 1 (Cauchy's functional equation). The most classical example of a simple (nondifferential) functional equation is to determine functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x, y \in \mathbb{R}$:

$$
f(x+y)=f(x)+f(y)
$$

As it stands the example has countless solutions (and I mean it in a technical way, there are uncountably many solutions). However, assuming mild properties of $f(x)$ one can show that $f(x)=a x$ for a fixed $a \in \mathbb{R}$ are the only solutions. This is the case when $f(x)$ is assumed to be continuous, or even integrable.
Remark 1. A large number of functional equations can be reduced to Cauchy's functional equation via alegbraic manipulations.

I identified 3 main topics:

1. Functional equations with integers, where you use the fact that the integers are discrete.
2. Functional equations over \mathbb{R} where you use algebraic manipulations.
3. Functional equations over \mathbb{R} where you use analytic properties of $f(x)$, such that continuity or differentiability or integrability.

2 Problems

2.1 Functional equations and the integers

Easier

1. (Putnam 1992) Show that $f(n)=1-n$ is the only integer-valued function defined on the integers that satisfies the following conditions:
(a) $f(f(n))=n$ for all integers n
(b) $f(f(n+2)+2)=n$ for all integers n
(c) $f(0)=1$.

Harder

2. Suppose $f: \mathbb{Z}_{\geq 1} \rightarrow \mathbb{Z}_{\geq 1}$ satisfies $f(n+1)>f(f(n))$ for all $n \geq 1$.
(a) Show that $f(1)$ is the minimum value of f.
(b) Show that $f(1)<f(2)<f(3)<\ldots$.
(c) Show that $f(n)>n$ can never happen.
(d) Deduce that $f(n)=n$ for all n.

2.2 Functional equations and algebraic manipulations

Easier

3. (Putnam 1971) Let $f(x)$ be a function defined on real numbers except 0 and 1. Find $f(x)$ knowing that it satisfies $f(x)+f(1-1 / x)=1+x$.

Harder

4. (Putnam 1988) Show that there exists a unique function $f(x):(0, \infty) \rightarrow(0, \infty)$ such that $f(f(x))=$ $6 x-f(x)$ for all $x>0$.
5. (Putnam 1996) Let $c \geq 0$ be a constant. Give a complete description of the set of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=f\left(x^{2}+c\right)$ for all $x \in \mathbb{R}$.

2.3 Functional equations and calculus

Easier

6. (Putnam 1971) Find all polynomials $P(x)$ such that $P\left(x^{2}+1\right)=P(x)^{2}+1$ and $P(0)=0$.
7. (Putnam 1991) Suppose f and g are nonconstant differentiable real-valued functions on \mathbb{R}. Also suppose that for all x, y real,

$$
\begin{aligned}
f(x+y) & =f(x) f(y)-g(x) g(y) \\
g(x+y) & =f(x) g(y)+g(x) f(y)
\end{aligned}
$$

If $f^{\prime}(0)=0$ show that $f(x)^{2}+g(x)^{2}=1$ for all x.

Harder

8. (Putnam 2000) Let $f:[-1,1] \rightarrow \mathbb{R}$ be a continuous function such that $f\left(2 x^{2}-1\right)=2 x f(x)$ for all x. Show that $f(x)=0$ for all x.

2.4 Extra problems

Easier

9. Suppose $f: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Z}_{\geq 0}$ satisfies $f(f(n))=n+3$ for all integers $n \geq 0$.
(a) Show that $f(n+3)=f(n)+3$.
(b) Deduce that $f(3 k)=3 k+f(0), f(3 k+1)=3 k+f(1)$ and $f(3 k+2)=3 k+f(2)$ for all nonnegative integers k.
(c) Show that $f(f(n)) \equiv n(\bmod 3)$ and conclude that either $f(x) \equiv x(\bmod 3)$ for at least one of $x \in\{0,1,2\}$.
(d) Deduce that no such function $f(n)$ exists.
10. Suppose $f: \mathbb{Q}_{>0} \rightarrow \mathbb{Q}_{>0}$ satisfies $f(x f(y))=\frac{f(x)}{y}$ for all $x, y \in \mathbb{Q}_{>0}$.
(a) Show that $f(f(y))=f(1) / y$, that $f(f(1))=1$ and deduce that $f(1)=1$.
(b) Deduce that $f(f(y))=1 / y$ and show that $f(1 / y)=1 / f(y)$.
(c) Show that $f(x / y)=f(x) / f(y)$.
(d) Deduce that $f(x y)=f(x) f(y)$ for all x, y.
(e) Can you find ONE example of such f ?
11. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f(0)=1 / 2$ and there is some real α for which

$$
f(x+y)=f(x) f(\alpha-y)+f(y) f(\alpha-x)
$$

for all $x, y \in \mathbb{R}$.
(a) Show that $f(\alpha)=1 / 2$.
(b) Show that $f(\alpha-x)=f(x)$ for all x.
(c) Show that $f(x)= \pm 1 / 2$ for all x.
(d) Show that in fact $f(x)=1 / 2$ for all x.
(e) Suppose we drop the assumption that $f(0)=1 / 2$. Can you find a nonconstant solution to the functional equation?
12. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $x f(y)+y f(x)=(x+y) f(x) f(y)$. Show that for every $x \in \mathbb{R}$ we have $f(x) \in\{0,1\}$. Can you show that f is an even function?
13. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f(x) f(y)=f(x-y)$ for all x, y and also suppose that f is not the 0 function. Show that $f(0)=1$ and that for every $x \in \mathbb{R}, f(x) \in\{-1,1\}$.
14. For each of the following functional equations find all continuous $f(x)$ that satisfy the equation:
(a) $f(x+y)=f(x) f(y)$ with $f: \mathbb{R} \rightarrow(0, \infty)$.
(b) $f(x+y)=f(x)+f(y)+f(x) f(y)$.
(c) $f(x y)=f(x)+f(y)$ for $f:(0, \infty) \rightarrow \mathbb{R}$.
(d) $f(x y)=x f(y)+y f(x)$ for $f:(0, \infty) \rightarrow \mathbb{R}$.

Harder

15. Determine all functions $f:[0, \infty) \rightarrow[0, \infty)$ satisfying the following properties: (a) $f(2)=0$, (b) if $x \in[0,2)$ then $f(x) \neq 0$, and (c) if $x, y \in[0, \infty)$ then $f(x+y)=f(x f(y)) f(y)$.
16. Find the polynomials $P(X)$ such that $P(X+1)=P(X)+2 X+1$.
17. (Putnam 2016) Find all functions $f:(1, \infty) \rightarrow(1, \infty)$ with the following property: if $x, y \in(1, \infty)$ and $x^{2} \leq y \leq x^{3}$ then $(f(x))^{2} \leq f(y) \leq(f(x))^{3}$.
18. Determine the continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x+y)=f(x) f(y)$. [Hint: Can you reduce to Exercise 14(a)?]
19. Find the continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the functional equation

$$
f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}
$$

20. Determine the continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}_{\neq 0}$ such that for all x, y,

$$
f(x+y)=\frac{f(x) f(y)}{f(x)+f(y)}
$$

