Math 43900 Problem Solving

Fall 2021
Lecture 7 Number Theory

Andrei Jorza

Evan O'Dorney

These problems are taken from the textbook, from Engel's Problem solving strategies, from Ravi Vakil's Putnam seminar notes and from Po-Shen Loh's Putnam seminar notes.

Number Theory

There are three main themes that show up in competition-style number-theory-related problems: modular arithmetic, Diophantine equations and divisibility. There's lots of other themes and ideas, such as infinite descent, integral functions and inequalities: you can see lots of these ideas in the textbook. Number theory is too vast and diverse to capture in one lecture or one collection of a dozen exercises, especially when it is combined with combinatorics. My best suggestion is to try to get a feel for what's out there from the examples and exercises in the textbook.

Some useful facts are:

1. Modular arithmetic: Suppose that $a \equiv b \bmod m$ and $c \equiv d \bmod m$. Then

$$
a+c \equiv b+d, \quad a-c \equiv b-d, \quad a c \equiv b d \quad \bmod m .
$$

If c is invertible modulo m (that is, $\operatorname{gcd}(c, m)=1$, then also $a / c \equiv b / d \bmod m$. More generally, if f is a polynomial with integer coefficients, then $f(a) \equiv f(b) \bmod m$. Warning: It is not necessarily true that $a^{c} \equiv b^{d} \bmod m$.
2. Unique factorization (a.k.a. the Fundamental Theorem of Arithmetic): Every integer can be written uniquely as a product of prime numbers, up to permutations of the prime factors.
3. The Chinese remainder theorem: If m and n are coprime, then the system

$$
\begin{aligned}
x \equiv a & \bmod m \\
x \equiv b & \bmod n
\end{aligned}
$$

has a unique solution mod $m n$. Ditto for any number of simultaneous congruences, as long as the moduli are pairwise coprime.
4. Bézout's identity: If m and n are two integers with gcd d there exist integers a and b such that $a m+b n=d$. In other words, m has a multiplicative inverse $\bmod n$ and vice versa. This also works for polynomials in one variable over fields, which is likewise extremely useful.
5. Fermat's little theorem: If p is a prime number and a is not divisible by p then $a^{p-1} \equiv 1$ $(\bmod p)$. More generally, Euler's theorem: if n is an integer, let $\varphi(n)=n \prod_{p \mid n}(1-1 / p)$ where the product is over the prime divisors of n, each prime appearing a single time. Then if a is coprime to n then $a^{\varphi(n)} \equiv 1(\bmod n)$.
6. If p is a prime number, then the exponent of p in the prime factorization of $n!$ is $\lfloor n / p\rfloor+$ $\left\lfloor n / p^{2}\right\rfloor+\cdots$.

Some more advanced facts:
7. The group of units $\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{\times}$is cyclic if p is odd, and

$$
\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{\times} \cong\{ \pm 1\} \times\left\{1,3,3^{2}, \ldots, 3^{2^{n-2}-1}\right\}
$$

8. You can factor uniquely into primes in $\mathbb{Z}[i]$ and $\mathbb{Z}[\omega]$ where ω is a 3rd root of unity.
9. If p is an odd prime, the Legendre symbol $\left(\frac{x}{p}\right)$ is defined as 0 if $p \mid x, 1$ if x is a nonzero square $\bmod p$, and -1 otherwise. It has nice properties:

- Euler's criterion: $\left(\frac{x}{p}\right) \equiv x^{(p-1) / 2} \bmod p$.
- Multplicativity: $\left(\frac{x y}{p}\right)=\left(\frac{x}{p}\right)\left(\frac{y}{p}\right)$.
- $\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}$ and $\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}$
- Quadratic reciprocity: $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{(p-1)(q-1) / 4}$ if p and q are odd primes.

Modular arithmetic

Easier

1. Show that the equation $x^{2}+x+1=11 y$ has no integer solutions. [Hint: What can the left hand side be mod 11?]
2. (Putnam 1977) Show that $\binom{p a}{p b} \equiv\binom{a}{b}(\bmod p)$ for all $a \geq b \geq 0$ integers and primes p.
3. Suppose p is a prime $\equiv 3(\bmod 4)$. If $p \mid x^{2}+y^{2}$ then $p \mid x$ and $p \mid y$. [Hint: If not, then -1 would be a square $\bmod p$.]

Harder

4. Show that there exist no primes p such that for some multiple m of p one has $\binom{m+p}{p} \equiv 1$ $(\bmod m) .(A M M 12030)$
5. (Putnam 1985) Let $a_{1}=3$ and for $n \geq 1$ defined $a_{n+1}=3^{a_{n}}$. Which integers between 00 and 99 inclusive occur as the last two digits in the decimal expansion of infinitely many a_{n} ? [Hint: If a is coprime to n then $a^{b} \bmod n=a^{b} \bmod \varphi(n) \bmod n$.]
6. (Putnam 1991) Let p be an odd prime. Show that

$$
\sum_{j=0}^{p}\binom{p}{j}\binom{p+j}{j} \equiv 1+2^{p} \quad\left(\bmod p^{2}\right)
$$

[Hint: $\binom{p+j}{j}$ is the coefficient of x^{p} in $(1+x)^{p+j}$.]

Divisibility and equations

Easier

7. (Putnam 1983) How many positive integers n are there such that n is a divisor of either 10^{40} or 20^{30} ?
8. (Putnam 1984) For an integer n define $f(n)=1!+2!+\cdots+n!$. Find polynomials $P(n)$ and $Q(n)$ such that $f(n+2)=P(n) f(n+1)+Q(n) f(n)$ for all $n \geq 1$.
9. (Putnam 1981) Let $E(n)$ be the largest integer k such that 5^{k} divides $1^{1} \cdot 2^{2} \cdot 3^{3} \cdots n^{n}$. Compute $\lim _{n \rightarrow \infty} \frac{E(n)}{n^{2}}$.

Harder

10. Solve in the integers $2^{x} \cdot 3^{y}=1+5^{z}$. [Hint: $\operatorname{Mod} 4$ and $\bmod 9$.]
11. (This one is very nice and related to a problem from the handout on polynomials) Let $P(X), Q(X) \in \mathbb{Z}[X]$ be two polynomials of degrees m and n, such that every coefficient of $P(X)$ or $Q(X)$ is either 1 or 2017. If $P(X) \mid Q(X)$, show that $m+1 \mid n+1$. [Hint: mod 3.]
12. (Putnam 1984) For an integer k let $d(k)$ be the number of 1 's in the binary expansion of k. Compute in closed form the sum

$$
\sum_{k=0}^{2^{m}-1}(-1)^{d(k)} k^{m}
$$

[Hint: Expand and differentiate $(1-x)\left(1-x^{2}\right)\left(1-x^{4}\right) \cdots\left(1-x^{2^{m-1}}\right)$]

Extra problems

Easier

13. This is an arch-problem, useful for the other ones.
(a) What kinds of residues do squares have mod 3?
(b) What kinds of residues do squares have mod 5 ?
(c) What kinds of residues do squares have mod 11?
(d) What kinds of residues do cubes have mod 9 ?
14. Show that 2002^{2002} cannot be written as a sum of three cubes. [Hint: mod 9.]
15. Consider the sequence $\left(a_{n}\right)$ defined recursively by $a_{1}=2, a_{2}=5$, and $a_{n+1}=\left(2-n^{2}\right) a_{n}+$ $\left(2+n^{2}\right) a_{n-1}$ for $n \geq 2$. Do there exist indices p, q, r such that $a_{p} a_{q}=a_{r}$? [Hint: $\bmod 3$.]
16. Consider two integers $a \equiv 3(\bmod 4)$ and $b \equiv 2(\bmod 3)$. Show that a has a prime divisor $\equiv 3(\bmod 4)$ and b has a prime divisor $\equiv 2(\bmod 3)$.
17. Let p be an odd prime. Expand $(x-y)^{p-1}$ reducing the coefficients mod p.
18. Pythagorean triples. Show that the only solutions to $x^{2}+y^{2}=z^{2}$ in the integers are of the form $x=d\left(m^{2}-n^{2}\right), y=2 d m n$ and $z=d\left(m^{2}+n^{2}\right)$ (up to signs and swapping x with y).
19. Consider the sequence $\left(a_{n}\right)$ defined by $a_{0}=A \in \mathbb{Z}_{\geq 1}$ and $a_{n+1}=2 a_{n}-k^{2}$ where k^{2} is the largest perfect square $\leq a_{n}$. Show that the sequence $\left(a_{n}\right)$ becomes stationary if and only if A is a perfect square. [Hint: If a_{n} is not a perfect square then it has to be between two consecutive perfect squares. Deduce that the same is true of a_{n+1}.]
20. Find all integers n such that $\frac{n^{3}-3 n^{2}+4}{2 n-1}$ is an integer.
21. Show that in the product $1!\cdot 2!\cdot 3!\cdots 99$! $\cdot 100$! one factor can be removed to get a perfect square.
22. Show that $2^{n} \nmid n$! for any $n \geq 1$.

Harder

23. Use the Problems 16 and 13 to find all integers n such that $2^{n}-1 \mid a^{2}+1$ for some integer a. (A harder version replaces $a^{2}+1$ with $a^{2}+9$.)
24. Is it possible to place 2015 positive integers on a circle such that for every pair of adjacent numbers the ratio of the larger one to the smaller one is a prime? [Hint: It's important that 2015 is odd.]
25. As an application of Problem 13 show that the system of equations

$$
\left\{\begin{array}{l}
5 x^{2}+y^{2}=z^{2} \\
x^{2}+5 y^{2}=t^{2}
\end{array}\right.
$$

has no integer solutions. [Hint: Add them up.]
26. (Putnam 1999) Let \mathcal{S} be a finite set of integers, each >1. Suppose that for each integer n there is some $s \in \mathcal{S}$ such that either $(s, n)=1$ or $(s, n)=s$. Show that there exist $s, t \in \mathcal{S}$ such that (s, t) is a prime number. [Hint: Seek the smallest positive integer that has common factors with every element of \mathcal{S}.]

