Math 43900 Problem Solving Fall 2021

Lecture 7 Number Theory

Andrei Jorza Evan O'Dorney

These problems are taken from the textbook, from Engel's *Problem solving strategies*, from Ravi Vakil's Putnam seminar notes and from Po-Shen Loh's Putnam seminar notes.

Number Theory

There are three main themes that show up in competition-style number-theory-related problems: modular arithmetic, Diophantine equations and divisibility. There's lots of other themes and ideas, such as infinite descent, integral functions and inequalities: you can see lots of these ideas in the textbook. Number theory is too vast and diverse to capture in one lecture or one collection of a dozen exercises, especially when it is combined with combinatorics. My best suggestion is to try to get a feel for what's out there from the examples and exercises in the textbook.

Some useful facts are:

1. Modular arithmetic: Suppose that $a \equiv b \mod m$ and $c \equiv d \mod m$. Then

$$a + c \equiv b + d$$
, $a - c \equiv b - d$, $ac \equiv bd \mod m$.

If c is invertible modulo m (that is, gcd(c, m) = 1, then also $a/c \equiv b/d \mod m$. More generally, if f is a polynomial with integer coefficients, then $f(a) \equiv f(b) \mod m$. WARNING: It is not necessarily true that $a^c \equiv b^d \mod m$.

- 2. Unique factorization (a.k.a. the Fundamental Theorem of Arithmetic): Every integer can be written uniquely as a product of prime numbers, up to permutations of the prime factors.
- 3. The Chinese remainder theorem: If m and n are coprime, then the system

$$x \equiv a \mod m$$
$$x \equiv b \mod n$$

has a unique solution mod mn. Ditto for any number of simultaneous congruences, as long as the moduli are pairwise coprime.

4. Bézout's identity: If m and n are two integers with gcd d there exist integers a and b such that am + bn = d. In other words, m has a multiplicative inverse mod n and vice versa. This also works for polynomials in one variable over fields, which is likewise extremely useful.

- 5. Fermat's little theorem: If p is a prime number and a is not divisible by p then $a^{p-1} \equiv 1 \pmod{p}$. More generally, Euler's theorem: if n is an integer, let $\varphi(n) = n \prod_{p|n} (1-1/p)$ where the product is over the prime divisors of n, each prime appearing a single time. Then if a is coprime to n then $a^{\varphi(n)} \equiv 1 \pmod{n}$.
- 6. If p is a prime number, then the exponent of p in the prime factorization of n! is $\lfloor n/p \rfloor + \lfloor n/p^2 \rfloor + \cdots$.

Some more advanced facts:

7. The group of units $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$ is cyclic if p is odd, and

$$(\mathbb{Z}/2^n\mathbb{Z})^{\times} \cong \{\pm 1\} \times \{1, 3, 3^2, \dots, 3^{2^{n-2}-1}\}.$$

- 8. You can factor uniquely into primes in $\mathbb{Z}[i]$ and $\mathbb{Z}[\omega]$ where ω is a 3rd root of unity.
- 9. If p is an odd prime, the Legendre symbol $\left(\frac{x}{p}\right)$ is defined as 0 if $p \mid x$, 1 if x is a nonzero square mod p, and -1 otherwise. It has nice properties:
 - Euler's criterion: $\left(\frac{x}{p}\right) \equiv x^{(p-1)/2} \mod p$.
 - Multiplicativity: $\left(\frac{xy}{p}\right) = \left(\frac{x}{p}\right)\left(\frac{y}{p}\right)$.
 - $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$ and $\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$
 - Quadratic reciprocity: $(\frac{p}{q})(\frac{q}{p}) = (-1)^{(p-1)(q-1)/4}$ if p and q are odd primes.

Modular arithmetic

Easier

- 1. Show that the equation $x^2 + x + 1 = 11y$ has no integer solutions. [Hint: What can the left hand side be mod 11?]
- 2. (Putnam 1977) Show that $\binom{pa}{pb} \equiv \binom{a}{b} \pmod{p}$ for all $a \ge b \ge 0$ integers and primes p.
- 3. Suppose p is a prime $\equiv 3 \pmod{4}$. If $p \mid x^2 + y^2$ then $p \mid x$ and $p \mid y$. [Hint: If not, then -1 would be a square mod p.]

Harder

- 4. Show that there exist no primes p such that for some multiple m of p one has $\binom{m+p}{p} \equiv 1 \pmod{m}$. (AMM 12030)
- 5. (Putnam 1985) Let $a_1 = 3$ and for $n \ge 1$ defined $a_{n+1} = 3^{a_n}$. Which integers between 00 and 99 inclusive occur as the last two digits in the decimal expansion of infinitely many a_n ? [Hint: If a is coprime to n then $a^b \mod n = a^b \mod \varphi(n) \mod n$.]

6. (Putnam 1991) Let p be an odd prime. Show that

$$\sum_{j=0}^{p} {p \choose j} {p+j \choose j} \equiv 1 + 2^p \pmod{p^2}.$$

[Hint: $\binom{p+j}{j}$ is the coefficient of x^p in $(1+x)^{p+j}$.]

Divisibility and equations

Easier

- 7. (Putnam 1983) How many positive integers n are there such that n is a divisor of either 10^{40} or 20^{30} ?
- 8. (Putnam 1984) For an integer n define $f(n) = 1! + 2! + \cdots + n!$. Find polynomials P(n) and Q(n) such that f(n+2) = P(n)f(n+1) + Q(n)f(n) for all $n \ge 1$.
- 9. (Putnam 1981) Let E(n) be the largest integer k such that 5^k divides $1^1 \cdot 2^2 \cdot 3^3 \cdots n^n$. Compute $\lim_{n \to \infty} \frac{E(n)}{n^2}$.

Harder

- 10. Solve in the integers $2^x \cdot 3^y = 1 + 5^z$. [Hint: Mod 4 and mod 9.]
- 11. (This one is very nice and related to a problem from the handout on polynomials) Let $P(X), Q(X) \in \mathbb{Z}[X]$ be two polynomials of degrees m and n, such that every coefficient of P(X) or Q(X) is either 1 or 2017. If $P(X) \mid Q(X)$, show that $m+1 \mid n+1$. [Hint: mod 3.]
- 12. (Putnam 1984) For an integer k let d(k) be the number of 1's in the binary expansion of k. Compute in closed form the sum

$$\sum_{k=0}^{2^m-1} (-1)^{d(k)} k^m.$$

[Hint: Expand and differentiate $(1-x)(1-x^2)(1-x^4)\cdots(1-x^{2^{m-1}})$.]

Extra problems

Easier

- 13. This is an arch-problem, useful for the other ones.
 - (a) What kinds of residues do squares have mod 3?
 - (b) What kinds of residues do squares have mod 5?
 - (c) What kinds of residues do squares have mod 11?
 - (d) What kinds of residues do cubes have mod 9?
- 14. Show that 2002^{2002} cannot be written as a sum of three cubes. [Hint: mod 9.]

- 15. Consider the sequence (a_n) defined recursively by $a_1 = 2$, $a_2 = 5$, and $a_{n+1} = (2 n^2)a_n + (2 + n^2)a_{n-1}$ for $n \ge 2$. Do there exist indices p, q, r such that $a_p a_q = a_r$? [Hint: mod 3.]
- 16. Consider two integers $a \equiv 3 \pmod{4}$ and $b \equiv 2 \pmod{3}$. Show that a has a prime divisor $\equiv 3 \pmod{4}$ and b has a prime divisor $\equiv 2 \pmod{3}$.
- 17. Let p be an odd prime. Expand $(x-y)^{p-1}$ reducing the coefficients mod p.
- 18. Pythagorean triples. Show that the only solutions to $x^2 + y^2 = z^2$ in the integers are of the form $x = d(m^2 n^2)$, y = 2dmn and $z = d(m^2 + n^2)$ (up to signs and swapping x with y).
- 19. Consider the sequence (a_n) defined by $a_0 = A \in \mathbb{Z}_{\geq 1}$ and $a_{n+1} = 2a_n k^2$ where k^2 is the largest perfect square $\leq a_n$. Show that the sequence (a_n) becomes stationary if and only if A is a perfect square. [Hint: If a_n is not a perfect square then it has to be between two consecutive perfect squares. Deduce that the same is true of a_{n+1} .]
- 20. Find all integers n such that $\frac{n^3 3n^2 + 4}{2n 1}$ is an integer.
- 21. Show that in the product $1! \cdot 2! \cdot 3! \cdots 99! \cdot 100!$ one factor can be removed to get a perfect square.
- 22. Show that $2^n \nmid n!$ for any $n \geq 1$.

Harder

- 23. Use the Problems 16 and 13 to find all integers n such that $2^n 1 \mid a^2 + 1$ for some integer a. (A harder version replaces $a^2 + 1$ with $a^2 + 9$.)
- 24. Is it possible to place 2015 positive integers on a circle such that for every pair of adjacent numbers the ratio of the larger one to the smaller one is a prime? [Hint: It's important that 2015 is odd.]
- 25. As an application of Problem 13 show that the system of equations

$$\begin{cases} 5x^2 + y^2 = z^2 \\ x^2 + 5y^2 = t^2 \end{cases}$$

has no integer solutions. [Hint: Add them up.]

26. (Putnam 1999) Let S be a finite set of integers, each > 1. Suppose that for each integer n there is some $s \in S$ such that either (s, n) = 1 or (s, n) = s. Show that there exist $s, t \in S$ such that (s, t) is a prime number. [Hint: Seek the smallest positive integer that has common factors with every element of S.]

4