
Math 43900 Problem Solving

Fall 2021

Lecture 7 Number Theory

Andrei Jorza Evan O’Dorney

These problems are taken from the textbook, from Engel’s Problem solving strategies, from Ravi
Vakil’s Putnam seminar notes and from Po-Shen Loh’s Putnam seminar notes.

Number Theory

There are three main themes that show up in competition-style number-theory-related problems:
modular arithmetic, Diophantine equations and divisibility. There’s lots of other themes and ideas,
such as infinite descent, integral functions and inequalities: you can see lots of these ideas in the
textbook. Number theory is too vast and diverse to capture in one lecture or one collection of a
dozen exercises, especially when it is combined with combinatorics. My best suggestion is to try
to get a feel for what’s out there from the examples and exercises in the textbook.

Some useful facts are:

1. Modular arithmetic: Suppose that a ≡ b mod m and c ≡ d mod m. Then

a + c ≡ b + d, a− c ≡ b− d, ac ≡ bd mod m.

If c is invertible modulo m (that is, gcd(c,m) = 1, then also a/c ≡ b/d mod m. More
generally, if f is a polynomial with integer coefficients, then f(a) ≡ f(b) mod m. Warning:
It is not necessarily true that ac ≡ bd mod m.

2. Unique factorization (a.k.a. the Fundamental Theorem of Arithmetic): Every integer can be
written uniquely as a product of prime numbers, up to permutations of the prime factors.

3. The Chinese remainder theorem: If m and n are coprime, then the system

x ≡ a mod m

x ≡ b mod n

has a unique solution mod mn. Ditto for any number of simultaneous congruences, as long
as the moduli are pairwise coprime.

4. Bézout’s identity: If m and n are two integers with gcd d there exist integers a and b such
that am+ bn = d. In other words, m has a multiplicative inverse mod n and vice versa. This
also works for polynomials in one variable over fields, which is likewise extremely useful.
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5. Fermat’s little theorem: If p is a prime number and a is not divisible by p then ap−1 ≡ 1
(mod p). More generally, Euler’s theorem: if n is an integer, let ϕ(n) = n

∏
p|n(1−1/p) where

the product is over the prime divisors of n, each prime appearing a single time. Then if a is
coprime to n then aϕ(n) ≡ 1 (mod n).

6. If p is a prime number, then the exponent of p in the prime factorization of n! is bn/pc +
bn/p2c+ · · · .

Some more advanced facts:

7. The group of units (Z/pkZ)× is cyclic if p is odd, and

(Z/2nZ)× ∼= {±1} × {1, 3, 32, . . . , 32n−2−1}.

8. You can factor uniquely into primes in Z[i] and Z[ω] where ω is a 3rd root of unity.

9. If p is an odd prime, the Legendre symbol
(
x
p

)
is defined as 0 if p | x, 1 if x is a nonzero square

mod p, and −1 otherwise. It has nice properties:

• Euler’s criterion:
(
x
p

)
≡ x(p−1)/2 mod p.

• Multplicativity:
(xy
p

)
=
(
x
p

)(y
p

)
.

•
(−1

p

)
= (−1)(p−1)/2 and

(
2
p

)
= (−1)(p

2−1)/8

• Quadratic reciprocity:
(p
q

)(q
p

)
= (−1)(p−1)(q−1)/4 if p and q are odd primes.

Modular arithmetic

Easier

1. Show that the equation x2 + x + 1 = 11y has no integer solutions. [Hint: What can the left
hand side be mod 11?]

2. (Putnam 1977) Show that

(
pa

pb

)
≡
(
a

b

)
(mod p) for all a ≥ b ≥ 0 integers and primes p.

3. Suppose p is a prime ≡ 3 (mod 4). If p | x2 + y2 then p | x and p | y. [Hint: If not, then −1
would be a square mod p.]

Harder

4. Show that there exist no primes p such that for some multiple m of p one has

(
m + p

p

)
≡ 1

(mod m). (AMM 12030)

5. (Putnam 1985) Let a1 = 3 and for n ≥ 1 defined an+1 = 3an . Which integers between 00
and 99 inclusive occur as the last two digits in the decimal expansion of infinitely many an?
[Hint: If a is coprime to n then ab mod n = ab mod ϕ(n) mod n.]
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6. (Putnam 1991) Let p be an odd prime. Show that

p∑
j=0

(
p

j

)(
p + j

j

)
≡ 1 + 2p (mod p2).

[Hint:
(
p+j
j

)
is the coefficient of xp in (1 + x)p+j .]

Divisibility and equations

Easier

7. (Putnam 1983) How many positive integers n are there such that n is a divisor of either 1040

or 2030?

8. (Putnam 1984) For an integer n define f(n) = 1! + 2! + · · ·+ n!. Find polynomials P (n) and
Q(n) such that f(n + 2) = P (n)f(n + 1) + Q(n)f(n) for all n ≥ 1.

9. (Putnam 1981) Let E(n) be the largest integer k such that 5k divides 11·22·33 · · ·nn. Compute

lim
n→∞

E(n)

n2
.

Harder

10. Solve in the integers 2x · 3y = 1 + 5z. [Hint: Mod 4 and mod 9.]

11. (This one is very nice and related to a problem from the handout on polynomials) Let
P (X), Q(X) ∈ Z[X] be two polynomials of degrees m and n, such that every coefficient
of P (X) or Q(X) is either 1 or 2017. If P (X) | Q(X), show that m + 1 | n + 1. [Hint: mod
3.]

12. (Putnam 1984) For an integer k let d(k) be the number of 1’s in the binary expansion of k.
Compute in closed form the sum

2m−1∑
k=0

(−1)d(k)km.

[Hint: Expand and differentiate (1− x)(1− x2)(1− x4) · · · (1− x2
m−1

).]

Extra problems

Easier

13. This is an arch-problem, useful for the other ones.

(a) What kinds of residues do squares have mod 3?

(b) What kinds of residues do squares have mod 5?

(c) What kinds of residues do squares have mod 11?

(d) What kinds of residues do cubes have mod 9?

14. Show that 20022002 cannot be written as a sum of three cubes. [Hint: mod 9.]
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15. Consider the sequence (an) defined recursively by a1 = 2, a2 = 5, and an+1 = (2 − n2)an +
(2 + n2)an−1 for n ≥ 2. Do there exist indices p, q, r such that apaq = ar? [Hint: mod 3.]

16. Consider two integers a ≡ 3 (mod 4) and b ≡ 2 (mod 3). Show that a has a prime divisor
≡ 3 (mod 4) and b has a prime divisor ≡ 2 (mod 3).

17. Let p be an odd prime. Expand (x− y)p−1 reducing the coefficients mod p.

18. Pythagorean triples. Show that the only solutions to x2 + y2 = z2 in the integers are of the
form x = d(m2 − n2), y = 2dmn and z = d(m2 + n2) (up to signs and swapping x with y).

19. Consider the sequence (an) defined by a0 = A ∈ Z≥1 and an+1 = 2an − k2 where k2 is the
largest perfect square ≤ an. Show that the sequence (an) becomes stationary if and only
if A is a perfect square. [Hint: If an is not a perfect square then it has to be between two
consecutive perfect squares. Deduce that the same is true of an+1.]

20. Find all integers n such that
n3 − 3n2 + 4

2n− 1
is an integer.

21. Show that in the product 1! · 2! · 3! · · · 99! · 100! one factor can be removed to get a perfect
square.

22. Show that 2n - n! for any n ≥ 1.

Harder

23. Use the Problems 16 and 13 to find all integers n such that 2n − 1 | a2 + 1 for some integer
a. (A harder version replaces a2 + 1 with a2 + 9.)

24. Is it possible to place 2015 positive integers on a circle such that for every pair of adjacent
numbers the ratio of the larger one to the smaller one is a prime? [Hint: It’s important that
2015 is odd.]

25. As an application of Problem 13 show that the system of equations{
5x2 + y2 = z2

x2 + 5y2 = t2

has no integer solutions. [Hint: Add them up.]

26. (Putnam 1999) Let S be a finite set of integers, each > 1. Suppose that for each integer n
there is some s ∈ S such that either (s, n) = 1 or (s, n) = s. Show that there exist s, t ∈ S
such that (s, t) is a prime number. [Hint: Seek the smallest positive integer that has common
factors with every element of S.]
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