Math 40520 Theory of Number Homework 7

Due Wednesday, 11/9

Do 5.

1. Suppose $3^{10} \left\lvert\,\binom{ 3 n}{n}\right.$ for a positive integer n. Show that $n>3^{9}$.
2. In this exercise you will use the model $\pi(x) \approx \int_{2}^{x} \frac{d t}{\ln t}$ with $d \pi(x) \approx \frac{d x}{\ln x}$. Show that

$$
\sum_{p \leq n} \frac{1}{p} \approx \ln \ln n
$$

3. In this exercise you will use the model $\pi(x) \approx \int_{2}^{x} \frac{d t}{\ln t}$ with $d \pi(x) \approx \frac{d x}{\ln x}$. Show that

$$
\prod_{p \leq n} p \approx e^{n}
$$

and therefore our construction of n consecutive integers which are not square-free will yield an answer at most approximately $e^{2 n}$.
4. What is $v_{3}\left(\left(2^{n}-1\right)\left(2^{n}-2\right)\left(2^{n}-2^{2}\right) \cdots\left(2^{n}-2^{n-1}\right)\right)$ when $n=2022$?
5. Determine $v_{3}\left(5^{n}-1\right)$ as a function of $v_{3}(n)$. (Careful, the answer is a piece-wise defined function.)
6. What is $v_{11}\left(3^{146410}-2^{146410}\right)$?
7. What is $v_{7}\left(3^{5402250}-2^{31513125}\right)$? [Hint: This is not as hard as it looks. Rewrite the difference as a sum of two expressions of the form $a^{n}-b^{n}$.]
8. Let a be a positive integer. Find the smallest positive integer k such that $2^{2022} \mid 2049^{k}-1$.
9. Suppose x and $2 \leq k \leq n$ are integers. Show that

$$
v_{p}\left(\binom{n}{k} x^{k}\right)-v_{p}(n)-v_{p}(x)=(k-1) v_{p}(x)-\frac{k-s_{p}(k)}{p-1}+v_{p}((n-1)(n-2) \cdots(n-k+1))
$$

and therefore that $v_{p}\left(\binom{n}{k} x^{k}\right)>v_{p}(n)+v_{p}(x)$ whenever $v_{p}(x)>\frac{1}{p-1}$. Is this enough to prove LTE?

