Math 40520 Theory of Number Homework 8

Due Wednesday 11/16

Do 5.

1. What is the order of 5 modulo 2^{100} ?
2. Solve $x^{3} \equiv 8\left(\bmod 7^{5}\right)$. You may use that 3 is a primitive root $\bmod 7^{5}$, for instance by using one of the questions on this set. [Hint: Use primitive roots, just like we did with such equations mod primes.]
3. Suppose $p>2$ is a prime and a is an integer coprime to p. Show that a is a perfect square modulo p^{n} if and only if

$$
a^{\varphi\left(p^{n}\right) / 2} \equiv 1 \quad\left(\bmod p^{n}\right)
$$

[Hint: Almost identical to the Legendre symbol case.]
4. Let p be an odd prime. Suppose that $a \neq 0$ is a square $\bmod p$. Show that a is a square mod p^{n} for every $n \geq 1$.
5. Suppose $p>2$ is a prime, $n \geq 2$ and a is an integer such that a is a primitive root modulo p^{2}. Show that a is then also a primitive root modulo p^{n} for all n. [Hint: Similar to the proof from class, but using a, not the specially constructed number.]
6. Write $f(x)=[3,1,4,1,5,9,2,6, x]$ as a function of x in the form of a linear fractional transformation.
7. Suppose $x>0$ is a real number. Find positive integers a_{0}, \ldots, a_{n} such that $\frac{7 x+3}{5 x+2}=\left[a_{0} ; a_{1}, \ldots, a_{d}, x\right]$.
8. Determine the complete continued fraction expansion of $\frac{1982}{2022}$.
9. Find a fraction $\frac{a}{b}$ with $0<a, b<100$ with the longest possible continued fraction expansion among all such fractions.

