Math 40520 Theory of Number Homework 9

Due Wednesday 11/30

Do 5.

1. Textbook exercise 5.3 on page 121 .
2. Textbook exercise 5.4 on page 121 .
3. A fraction $\frac{a}{b} \approx 0.515287517$ has a and b with 4 digits. What are they?
4. Continued fractions of the form $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ make sense for real numbers $a_{n}>0$. Show that they converge whenever $\sum a_{n}$ diverges (see Theorem 5.3.8 in the textbook).
5. (IMO 2019) Determine all positive integers m, n with the property that

$$
m!=\left(2^{n}-1\right)\left(2^{n}-2\right)\left(2^{n}-2^{2}\right) \cdots\left(2^{n}-2^{n-1}\right)
$$

[Hint: Combine the previous two questions about this equation.]
6. Suppose a real number x has the following continued fractions: $x=\left[4 ; 3,2,5,1, a_{5}, a_{6}, a_{7}, \ldots\right]$ where a_{n} are integers. Show that

$$
\left|x-\frac{193}{45}\right|<\frac{1}{3735}
$$

7. Find a polynomial $P(X) \in \mathbb{Q}[X]$, which is a product of 2 linear and 2 quadratic irreducible polynomials in $\mathbb{Q}[X]$, and which has the the following 6 -decimal approximation:

$$
P(X) \approx X^{6}-5.380846 X^{5}+1.723134 X^{4}+21.724378 X^{3}-14.273383 X^{2}-10.412687 X+1.997512
$$

8. Suppose $P(X)=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0} \in \mathbb{Z}[X]$ has a rational root $\frac{a}{b}$, written in lowest terms. Show that $a \mid a_{0}$ and $b \mid a_{n}$.
9. In the plane consider an equilateral triangle $A B C$ where A is at the origin, B is on the x-axis, and C is above the x-axis. I pick a point D, whose coordinates are positive integers, and whose x-coordinate is ≤ 10864, such that the rays $A C$ and $A D$ are as close as possible. What are the coordinates of D ?
