Math 40520 Theory of Number Homework 10

Due Wednesday, 12/7

Do 5.

1. Suppose $P(X) \in \mathbb{Z}[X], p$ is a prime, $P(a) \equiv 0\left(\bmod p^{n}\right)$ for an integer a such that $P^{\prime}(a) \equiv 0\left(\bmod p^{n}\right)$. This means we cannot apply, as stated in class, Hensel's lifting lemma. Show that there are only two possibilities:
(a) Either $P(a) \equiv 0\left(\bmod p^{n+1}\right)$, in which case ALL numbers $\equiv a\left(\bmod p^{n}\right)\left(\right.$ namely $a, a+p^{n}, a+$ $\left.2 p^{n}, \ldots, a+(p-1) p^{n}\right)$ are roots of $P(X) \equiv 0\left(\bmod p^{n+1}\right)$ lifting $a\left(\bmod p^{n}\right)$, or
(b) $P(a) \not \equiv 0\left(\bmod p^{n+1}\right)$, in which case there are NO solutions of $P(X) \equiv 0\left(\bmod p^{n+1}\right)$ lifting a $\left(\bmod p^{n}\right)$.
2. Determine all the roots of the equation $X^{5}-2 X^{3}-20 X+6 \equiv 0\left(\bmod 3^{4}\right)$. [Hint: You may/should use the previous problem, without proof.]
3. Find all solutions of the equation $X^{3}-X-1 \equiv 0\left(\bmod 7^{4}\right)$.
4. Show that the polynomial

$$
P(X)=\left(X^{2}-13\right)\left(X^{2}-17\right)\left(X^{2}-13 \cdot 17\right)
$$

has solutions modulo every positive integer.
5. Consider the equation $x^{2}+11 y^{2}=3$.
(a) Find the smallest rational solution, i.e., $x, y \in \mathbb{Q}$ with smallest possible numerator and denominator. In particular, that this equation has no integer solutions.
(b) Show that for all n it has solutions mod 2^{n} of the form $(0, y)$. [Hint: Recall that $x^{2} \equiv u\left(\bmod 2^{n}\right)$ has solutions for all n as long as $u \equiv 1(\bmod 8)$.]
(c) Show that $x^{2}+11 y^{2} \equiv 3(\bmod N)$ has solutions modulo every positive integer N.
6. Find all rational numbers x and y satisfying the equation $x^{2}+y^{2}=5$.
7. Find all rational numbers x and y satisfying the equation $x^{2}+2 x y+3 y^{2}=2$.
8. In this exercise you will solve the equation

$$
x^{2}+y^{2}+z^{2}=1
$$

with $x, y, z \in \mathbb{Q}$. Clearing denominators, this gives a complete list of rectangular boxes whose sides and long diagonal are integers.
(a) Suppose $(x, y, z) \neq(0,0,1)$ is a solution. Let (a, b) be the point of intersection of the ($x y$)-plane with the line through (x, y, z) and $(0,0,1)$. Show that

$$
\frac{x}{a}=\frac{y}{b}=1-z
$$

(b) Show, mimicking the procedure from the Pythagorean triples case, that every rational solution of the diophantine equation (other than $(0,0,1)$) is of the form

$$
x=\frac{2 a}{1+a^{2}+b^{2}} \quad y=\frac{2 b}{1+a^{2}+b^{2}} \quad z=\frac{a^{2}+b^{2}-1}{1+a^{2}+b^{2}}
$$

for rationals a, b.

