
Math 43900 Problem Solving

Fall 2022

Lecture 10 Matrices

Andrei Jorza

These problems are taken from the textbook, from Engel’s Problem solving strategies, from Ravi Vakil’s
Putnam seminar notes and from Po-Shen Loh’s Putnam seminar notes.

1 Matrices

Overview

The way matrices show up in problem solving problems involves the following three main themes:

1. algebraic manipulations of matrices (they can be multiplied and the operation is not commutative),

2. determinants and eigenvalues of matrices,

3. matrices as defining linear maps on vector spaces.

Basic results

1. You can always add two m× n matrices.

2. You can always multiply an m× n matrix and an n× p matrix to get an m× p matrix.

3. The trace of a matrix TrA is the sum of its diagonal terms. It has the property that Tr(A + B) =
Tr(A) + Tr(B) and Tr(AB) = Tr(BA) for all matrices A and B.

4. The determinant of a matrix detA is a polynomial expression in the entries of the matrix A and
satisfies the following properties:

(a) The determinant of (aij) is
∑
σ∈Sn

ε(σ)

n∏
i=1

ai,σ(i), where Sn is the group of permutations and ε(σ)

is the sign. The sign ε is multiplicative and if τ is a k-cycle then ε(τ) = (−1)k−1.

(b) If in a matrix A = (aij) you write Ap,q for the (n− 1)× (n− 1) where you eliminate the p-th row
and q-th column from A then

det(A) = a11 detA11 − a12 detA12 + · · ·+ (−1)n−1a1,n detA1,n

(c) A is invertible if and only if detA ̸= 0.

(d) det(AB) = det(A) det(B) for all matrices A and B.

(e) If you swap two rows or columns of a matrix A to obtain a matrix B then det(B) = −det(A).

(f) If in a matrix A you add a multiple of one row to a different row to get a matrix B then
det(B) = det(A). The same is true if you add a multiple of a column to a different column.
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5. Suppose A is an n × n matrix. If you can find a nonzero vector v (i.e., an n × 1 matrix consisting
of a single column) and a scalar α such that Av = αv then α is said to be an eigenvalue of A with
eigenvector v.

6. If A is an n× n matrix the characteristic polynomial of A is the monic degree n polynomial

PA(X) = det(XIn −A)

(a) A scalar α is an eigenvalue of A if and only if it is a root of PA(X). The roots of PA(X) are
the eigenvalues of A and are counted with multiplicity if they are not distinct. E.g., In has n
eigenvalues all equal to 1.

(b) PA(X) = Xn − (TrA)Xn−1 + · · ·+ (−1)n det(A).

(c) Since we know the relation between the coefficients of a polynomial and its roots we deduce that
if λ1, . . . , λn are the eigenvalues of A then

Tr(A) = λ1 + λ2 + · · ·+ λn

det(A) = λ1λ2 · · ·λn

(d) The Cayley-Hamilton theorem: If you plug A into the polynomial PA(X) you always get the 0
matrix, PA(A) = O.

(e) If A and B are matrices then PAB(X) = PBA(X) as polynomials.

7. A big result in linear algebra says that for any matrix A (over C) you can find an invertible matrix S
such that the conjugate SAS−1 has a very special shape: the Jordan canonical form. In fact the
Jordan canonical form SAS−1 has the n eigenvalues on the diagonal but much more is true: SAS−1

is block diagonal and each block is of the form
λ 1 0 . . .
0 λ 1 . . .

. . .
. . .

0 . . . 0 λ


with an eigenvalue λ on the diagonal and 1-s off diagonal. E.g., for a 2× 2 matrix the possible Jordan
canonical forms are (

λ1 0
0 λ2

)
for λ1 ̸= λ2 and

(
λ 0
0 λ

)
or

(
λ 1
0 λ

)
8. (VERY USEFUL) Suppose A is an n× n matrix and Q(X) is any polynomial. If the eigenvalues of

A are λ1, . . . , λn then the eigenvalues of Q(A) (also an n× n matrix) are Q(λ1), . . . , Q(λn).

2 Problems

2.1 Determinants, traces, characteristic polynomials and eigenvalues

Easier

1. (Putnam 1978) Let a ̸= b and p1, . . . , pn be real numbers, and let F (X) = (p1 −X) · · · (pn −X). Let
M be the n × n matrix which has p1, . . . , pn on the diagonal, a above the diagonal, and b below the
diagonal. Show that

detM =
bF (a)− aF (b)

b− a
.

2. (Putnam 1969) Show that det(|i− j|)1≤i,j≤n = (−1)n−1(n− 1)2n−2.

3. Let Dn be the (n−1)× (n−1) determinant that has 3, 4, . . . , n+1 on the diagonal and 1’s everywhere
else. Show that {Dn/n!} is unbounded.
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Harder

4. (Putnam 1984) Let M(x) = (mi,j) be the 2n × 2n matrix with entries mi,j = x if i = j, mi,j = a if

i ̸= j and i+ j is even, and mi,j = b if i ̸= j and i+ j is odd. Compute lim
x→a

detM(x)

(x− a)2n−2
.

5. (Putnam 1985) Let G = {M1, . . . ,Mr} be a finite set of n × n matrices which form a group under

matrix multiplication. Suppose

r∑
i=1

Tr(Mi) = 0. Show that

r∑
i=1

Mi = 0n×n.

2.2 Algebraic operations and linear algebra

Easier

6. Compute

(
λ1 0
0 λ2

)n

and

(
λ 1
0 λ

)n

for all n.

7. Suppose f(x) = a0+a1x+a2x
2+ · · · is a converging power series. Show that f(SAS−1) = Sf(A)S−1.

Harder

8. (Putnam 1986) Let A,B,C,D be n × n matrices with complex entries such that: ABt and CDt are
symmetric and ADt −BCt = In. Show that AtD − CtB = In.

9. (Putnam 1987) Let M be a 2n× n matrix with complex entries such that whenever (z1, . . . , z2n)M =
O1×n with complex zi, not all 0, then at least one zi is not real. Show that for any real r1, . . . , r2n
there exist complex z1, . . . , zn such that Re(M(z1, . . . , zn)

t) = (r1, . . . , r2n)
t.

2.3 Extra problems

Easier

10. Show that you can never find two n×nmatrices A and B with real coefficients such that AB−BA = In.

11. Consider an n × (n + 1) matrix A = (aij). For a column k write Ak for the n × n matrix you obtain
from A by removing the k-th column. Show that

a11 detA1 − a12 detA2 + · · ·+ (−1)n+1a1,n+1 detAn+1 = 0

12. Suppose P (X) is a polynomial and A is an n×n matrix such that P (A) = 0. Show that the eigenvalues
of A are among the roots of P (X).

13. This is an application of Exercise 19. SupposeX is an antisymmetric matrix, i.e., of the formX = −Xt.

(Think

(
x

−x

)
.) Show that every eigenvalue of X is of the form ai where i =

√
−1 and a ∈ R.

14. Show that Ak = 0 for some k ≥ 0 if and only if all the eigenvalues of A are 0 in which case An = 0 as
well.

15. (Putnam 1994) Let A and B be 2 by 2 matrices with integer entries such that A,A+B,A+2B,A+3B
and A+4B are all invertible matrices whose inverses have integer entries. Show that A+5B is invertible
and that its inverse has integer entries.
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16. Let p < m be positive integers. Show that

det


(
m
0

) (
m
1

)
. . .

(
m
p

)(
m+1
0

) (
m+1
1

)
. . .

(
m+1
p

)
...

...
. . .

...(
m+p
0

) (
m+p
1

)
. . .

(
m+p
p

)
 = 1.

17. Suppose (xn) is a sequence defined by the linear recurrence xn+2 = axn+1 + bxn for all n ≥ 0. Show
that (

xn+2

xn+1

)
=

(
a b
1 0

)(
xn+1

xn

)

and conclude that for n ≥ 1, xn is the first entry of the matrix

(
a b
1 0

)n−1(
x1

x0

)
.

18. A useful application of Exercise 6. Show that if f(x) = a0+a1x+a2x
2+ · · · is an absolutely convergent

power series then f

((
λ1 0
0 λ2

))
=

(
f(λ1) 0
0 f(λ2)

)
and f

((
λ 1
0 λ

))
=

(
f(λ) f ′(λ)
0 f(λ)

)
.

19. If u and v are n× 1 column matrices write ⟨u, v⟩ = utv for the dot product of the two vectors. If A is
an n× n matrix show that ⟨u,Av⟩ = ⟨Atu, v⟩. Show that ⟨v, v⟩ ≥ 0, where v is the complex conjugate
of v.

20. If A = (aij) show that Tr(A ·At) =
∑

i,j a
2
ij .

Harder

21. Suppose A is an n× n real matrix such that A2 = A+ In. Show that det(A) < 2n. In fact show that

det(A) ≤

(
1 +

√
5

2

)n

.

22. Suppose X is a real matrix with X +Xt = In. Show that detX ≥ 1
2n .

23. Compute the determinant of the matrix (aij) where aii = 2 and if i ̸= j then aij = (−1)i−j .

24. Let A and B be 3×3 matrices with real entries such that detA = detB = det(A+B) = det(A−B) = 0.
Show that det(xA+ yB) = 0 for all real numbers x, y.

25. Let n be an odd positive integer. Suppose A is an n × n matrix whose square A2 is either 0 or In.
Show that det(A+ In) ≥ det(A− In).

26. Suppose A and B are commuting n × n matrices with real entries such that det(A + B) ≥ 0. Show
that det(Ak +Bk) ≥ 0 for all k ≥ 1.

27. (Putnam 1996) Show that there exists no complex matrix A such that sin(A) =

(
1 1996
0 1

)
.

28. Suppose A and B are n × n real matrices such that Tr(A · At + B · Bt) = Tr(A · B + At · Bt). Show
that A = Bt.
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