How to value investments?

How do you measure how well an investment is doing?

- (Effective annual) yield rate. PRO:

CON:

- Implied (effective annual) interest rate. PRO:

CON:

- This chapter: Net present value, time and dollar weighted returns.

How to value investments?

How do you measure how well an investment is doing?

- (Effective annual) yield rate. PRO: Straightforward to compute Conceptually easy to explain CON: Can't account for investing money at different times
- Implied (effective annual) interest rate. PRO: Works for bonds and investing at different times
CON: Might not exist or might be meaningless
- This chapter: Net present value, time and dollar weighted returns.

What is an investment?

Investment

By an investment we mean a series of cashflows

- Receive A_{k} at time t_{k}
- Pay B_{k} at time t_{k}
- Cash flow at time t_{k} is $C_{k}=A_{k}-B_{k}$.

Internal Rate of Return

The IRR of an investment is the implied effective annual interest rate i such that

$$
\mathrm{PV}_{i}\left(C_{0}, C_{1}, \ldots, C_{n}\right)=0
$$

IRR Equation of Value

IRR

The IRR is any effective annual interest rate i such that

$$
\begin{array}{r}
C_{0} \nu_{i}^{t_{0}}+C_{1} \nu_{i}^{t_{1}}+\cdots+C_{n} \nu_{i}^{t_{n}}=0 \\
\frac{C_{0}}{(1+i)^{t_{0}}}+\frac{C_{1}}{(1+i)^{t_{1}}}+\cdots+\frac{C_{n}}{(1+i)^{t_{n}}}=0 .
\end{array}
$$

Examples

Loans:

- Loan amount L at time $t_{0}=0$.
- Payments K_{1}, \ldots, K_{n} at times $t_{1}=1, \ldots, t_{n}=n$.
- Cash flow $C_{0}=L, C_{1}=-K_{1}, \ldots, C_{n}=-K_{n}$.

Bonds:

- Price P.
- Coupons $F \cdot r, \ldots, F \cdot r, F \cdot r+F$.
- Cash flow $C_{0}=-P, C_{1}=F \cdot r, \ldots, C_{n-1}=F \cdot r$, $C_{n}=F \cdot r+F$.

Exercise

5.1.7

Smith buys an investment property for 900,000 by making a down payment of 150,000 and taking a loan for 750,000 . Starting one month after the loan is made Smith must make monthly loan payments, but he also receives monthly rental payments, set for 2 years such that his net outlay per month is 1200 . In addition there are taxes of 10,000 payable 6 months after the loan is made and annually thereafter as long as Smith owns the property. Two years after the original purchase date Smith sells the property for $Y \geq 741,200$, out of which he must pay the balance of 741,200 on the loan.
(1) What is the IRR if $Y=1 m$?
(2) What is the smallest Y for which the IRR is positive? (IRR is 16.39% effective annual, $i^{(12)}=15.276 \%$ nominal annual, $Y \geq 938800$)

Exercise

You always start with a timeline and a cashflow

$$
\begin{aligned}
C_{0} & =-150 k \\
C_{k} & =-1200 \quad k \neq 6,18,24 \\
C_{6} & =-11200 \\
C_{18} & =-11200 \\
C_{24} & =Y-741200
\end{aligned}
$$

Exercise

You always start with a timeline and a cashflow

$$
\begin{aligned}
C_{0} & =-150 k \\
C_{k} & =-1200 \quad k \neq 6,18,24 \\
C_{6} & =-11200 \\
C_{18} & =-11200 \\
C_{24} & =Y-741200
\end{aligned}
$$

(2): The bigger the sale price Y, the bigger the IRR. To find we smallest Y for which IRR is positive, we can preted IRR is 0 .

Lecture 32 April 12, 2023

Consumer-price index, 12-month change

Source: Labor Department
(wsj.com)

Exercise

5.1.7

Smith buys an investment property for 900,000 by making a down payment of 150,000 and taking a loan for 750,000 . Starting one month after the loan is made Smith must make monthly loan payments, but he also receives monthly rental payments, set for 2 years such that his net outlay per month is 1200 . In addition there are taxes of 10,000 payable 6 months after the loan is made and annually thereafter as long as Smith owns the property. Two years after the original purchase date Smith sells the property for $Y \geq 741,200$, out of which he must pay the balance of 741,200 on the loan.
(1) What is the IRR if $Y=1 m$?
(2) What is the smallest Y for which the IRR is positive? (IRR is 16.39% effective annual, $i^{(12)}=15.276 \%$ nominal annual, $Y \geq 938800$)

Exercise

You always start with a timeline and a cashflow

$$
\begin{aligned}
C_{0} & =-150 k \\
C_{k} & =-1200 \quad k \neq 6,18,24 \\
C_{6} & =-11200 \\
C_{18} & =-11200 \\
C_{24} & =Y-741200
\end{aligned}
$$

We have to solve
$-150000-1200 a_{\overline{24} j}-10000\left(\nu^{6}+\nu^{18}\right)+(Y-741200) \nu^{24}=0$.

Solving the equation

Input interpretation

$$
\begin{array}{l|l}
\text { solve } & -150000-1200 \times \frac{1-\frac{1}{(1+x)^{24}}}{x}- \\
& 10000\left(\frac{1}{(1+x)^{6}}+\frac{1}{(1+x)^{18}}\right)+\frac{1000000-741200}{(1+x)^{24}}=0
\end{array}
$$

Results
$x \approx-2.01870$
$x \approx 0.0125132$
$x \approx-1.98803-0.26535 i$
$x \approx-1.98803+0.26535 i$
$x \approx-1.88982-0.51371 i$

Problems with IRR

We define the IRR as an implied interest rate such that

$$
\mathrm{PV}_{i}\left(C_{0}, C_{1}, \ldots, C_{n}\right)=0
$$

Possible problems:

- A solution for i might not exist.
- More than one solution for i might exist.
- A solution obtained might be meaningless.

Unique solution to IRR equation

Theorem

Suppose an investment has $C_{0}=L>0$ (resp. $L<0$) and $C_{1}, \ldots, C_{n}<0\left(\right.$ resp. $\left.C_{1}, \ldots, C_{n}>0\right)$. Then there is a unique IRR.

Input interpretation

$$
\text { plot }-100+12 x+15 x^{3}+75 x^{9} \quad x=0 \text { to } 1.2
$$

Plot

Problems with IRR: no solution

Example: You sell a 10-year bond with par value 100, annual coupon rate 5%, for 110 and buy a 20-year bond with par value 100 , annual coupon rate 10%, for 90 . What is the IRR?

Problems with IRR: no solution

Example: You sell a 10-year bond with par value 100, annual coupon rate 5%, for 110 and buy a 20 -year bond with par value 100, annual coupon rate 10%, for 90 . What is the IRR?

Problems with IRR: ineffective in comparing

 investments
5.1.4

Transactions A and B are to be compared. Transaction A has net cashflows of

$$
C_{0}^{A}=-5, \quad C_{1}^{A}=3.72, \quad C_{2}^{A}=0, \quad C_{3}^{A}=4
$$

and Transaction B has net cashflows

$$
C_{0}^{B}=-5, C_{1}^{B}=3, C_{2}^{B}=1.7, C_{3}^{B}=3 .
$$

Question: What are the IRR for A and $B ?\left(\nu_{A}=0.797891\right.$, $i_{A}=25.330403 \%$ and $\left.\nu_{B}=0.797906, i_{B}=25.32804 \%\right)$

Problems with IRR: multiple solutions

5.1.4

Transactions A and B are to be compared. Transaction A has net cashflows of

$$
C_{0}^{A}=-5, \quad C_{1}^{A}=3.72, \quad C_{2}^{A}=0, \quad C_{3}^{A}=4
$$

and Transaction B has net cashflows

$$
C_{0}^{B}=-5, C_{1}^{B}=3, C_{2}^{B}=1.7, C_{3}^{B}=3
$$

Question: You sell A and buy B. What is the IRR?
(11.11\%, 25\%)

Net Present Value

The IRR frequently can't compare investment opportunities.

Better Question

Instead of asking "what interest rate" each investment yields ask "which investment is more advantageous depending on prevailing market interest rates"?

Net Present Value

The IRR frequently can't compare investment opportunities.

Better Question

Instead of asking "what interest rate" each investment yields ask "which investment is more advantageous depending on prevailing market interest rates"?

The Net Present Value of an investment is simply the present value PV_{i} at a certain (market) interest rate i, which can be thought of as cost of capital.

NPV in comparing investments

5.1.4

Transactions A and B are to be compared. Transaction A has net cashflows of

$$
C_{0}^{A}=-5, C_{1}^{A}=3.72, \quad C_{2}^{A}=0, \quad C_{3}^{A}=4
$$

and Transaction B has net cashflows

$$
C_{0}^{B}=-5, C_{1}^{B}=3, C_{2}^{B}=1.7, C_{3}^{B}=3 .
$$

Question: For what (market prevailing) interest rates i is A better than B ? $(i<11.11 \%$ or $i>25 \%)$

Lecture 33 April 14, 2023

IRR

IRR is the annual interest rate i that solves

$$
\operatorname{PV}_{i}\left(C_{0}, \ldots\right)=0
$$

NPV

For a specified interest rate i, the NPV is

$$
\mathrm{NPV}_{i}=\mathrm{PV}_{i}\left(C_{0}, \ldots\right)
$$

Remark
$I R R$ is the i for which $\mathrm{NPV}_{i}=0$.

Continuous versions of IRR and NPV

	IRR	NPV
Idea	$\mathrm{PV}_{i}($ Cashflows $)=0$	$=\mathrm{PV}_{i}($ Cashflows $)$
Discrete	$C_{0}+\frac{C_{1}}{1+i}+\cdots+\frac{C_{n}}{(1+i)^{n}}=0$	$C_{0}+\frac{C_{1}}{1+i}+\cdots+\frac{C_{n}}{(1+i)^{n}}$
Continuous	$\int_{0}^{n} C_{t} e^{-\delta t} d t=0$	$\int_{0}^{n} C_{t} e^{-\int_{0}^{t} \delta_{x} d x} d t$.

Exercise

5.1.11

Suppose a company is marketing a new product. The production and marketing process involves a startup cost of $1,000,000$ and continuing cost of 200,000 per year for 5 years, paid continuously. It is forecast that revenue from the product will begin one year after startup, and will continue until the end of the original 5 -year production process. Revenue (which will be received continuously) is estimated to start at a rate of 500,000 per year and increase linearly (and continuously) over a two-year period to a rate of $1,000,000$ per year at the end of the $3^{\text {rd }}$ year, and then decrease to a rate of 200,000 per year at the end of the $5^{\text {th }}$ year. Solve for the yield rate δ earned by the company over the 5 -year period.
$(\delta=17.42 \%)$

Exercise

$-1000+250 *\left[\right.$ integral from 1 to 3 of $\left.(1+x)^{*} e^{\wedge}(-x y) d x\right]-200 *\left[\right.$ integral from 0 to 5 of $\left.e^{\wedge}(-x y) d x\right]+400 *[$ integral fr $=$

```
NATURAL LANGUAGE \(\int_{\Sigma}^{\pi}\) MATH INPUT
```

曲 EXTENDED KEYBOARD $\quad \because: \%$ EXAMPLES
会 UPLOAD
24) RANDOM

Input
$-1000+250 \int_{1}^{3}(1+x) e^{-x y} d x-200 \int_{0}^{5} e^{-x y} d x+400 \int_{3}^{5}(5.5-x) e^{-x y} d x$
Result

$$
\begin{aligned}
& \frac{250 e^{-3 y}\left(-4 y+e^{2 y}(2 y+1)-1\right)}{y^{2}}+ \\
& \frac{400 e^{-5 y}\left(-0.5 y+e^{2 y}(2.5 y-1)+1\right)}{y^{2}}-\frac{200\left(1-e^{-5 y}\right)}{y}-1000
\end{aligned}
$$

Plots

Time weighted IRR

Idea

Given an investment we'd like a yield that is truly internal, i.e., one that isn't affected by cashflows.

Ignoring cash flows the investment behaves as follows:

Period	Start	End	Per period yield
0	A	F_{1}	i_{0}
1	$F_{1}+C_{1}$	F_{2}	i_{2}
2	$F_{2}+C_{2}$	F_{3}	i_{3}
\vdots			
n	$F_{n}+C_{n}$	B	i_{n}

Time weighted IRR

Definition

The time weighted IRR is the average rate of the inbetween cash flows rates of return:

$$
\begin{aligned}
(1+i)^{N} & =\left(1+i_{0}\right)\left(1+i_{1}\right) \cdots\left(1+i_{n}\right) \\
& =\frac{F_{1}}{A} \cdot \frac{F_{2}}{F_{1}+C_{1}} \cdot \frac{F_{3}}{F_{2}+C_{2}} \cdots \frac{B}{F_{n}+C_{n}} .
\end{aligned}
$$

Example

Suppose we start with 100 and at the end of every year, for 10 years, we deposit 100 into an account at interest rate 5%. What are the IRR and time-weighted IRR? (6.657% and 5%)

Exercise

5.2.1

The details regarding fund value, contributions and withdrawals from a fund are as follows:

	Date		Amount
Fund Values:	$1 / 1 / 15$		$1,000,000$
	$7 / 1 / 15$		$1,310,000$
	$1 / 1 / 16$		$1,265,000$
	$7 / 1 / 16$		$1,540,000$
	$1 / 1 / 17$		$1,420,000$
Contributions	$6 / 30 / 15$		250,000
Received:	$6 / 30 / 16$		250,000
Benefits	$12 / 31 / 15$		150,000
Paid:	$12 / 31 / 16$		150,000

Find the effective annual time-weighted rate of return for the two-year period of 2015 and 2016.

$$
(9.1 \%)
$$

Exercise

Date	Fund	Activity
$1 / 1 / 15$	1 m	
$6 / 30 / 15$		250 k
$7 / 1 / 15$	1.31 m	
$12 / 31 / 15$		-150 k
$1 / 1 / 16$	1.265 m	
$6 / 30 / 16$		250 k
$7 / 1 / 16$	1.54 m	
$12 / 31 / 16$		-150 k
$1 / 1 / 17$	1.42 m	

Lecture 34 April 17, 2023

Dollar-weighted IRR for 1 year

Idea

Pretend money in the investment earns simple interest over the course of the year.

Face value of money earned:

$$
I=B-\left(A+C_{1}+C_{2}+\cdots+C_{n}\right)
$$

Dollar-weighted IRR for 1 year

Idea

Pretend money in the investment earns simple interest over the course of the year.

Face value of money earned:

$$
I=B-\left(A+C_{1}+C_{2}+\cdots+C_{n}\right)
$$

Simple interest money earned:

$$
\mathrm{SI}=A i+C_{1} i\left(1-t_{1}\right)+C_{2} i\left(1-t_{2}\right)+\cdots+C_{n} i\left(1-t_{n}\right)
$$

Dollar-weighted IRR for 1 year

The dollar-weighted IRR is the implied simple interest obtained by equating the "interest" earned I with the simple interest earned SI:

$$
i=\frac{B-\left(A+C_{1}+C_{2}+\cdots+C_{n}\right)}{A+C_{1}\left(1-t_{1}\right)+C_{2}\left(1-t_{2}\right)+\cdots+C_{n}\left(1-t_{n}\right)} .
$$

Exercise

5.2.2

You are given the following information about an investment account:

Date	Value Immediately Before Deposit	Deposit
January 1	10	
July 1	12	X
December 31	X	

Over the year, the time-weighted return is 0%, and the dollarweighted return is Y. Calculate Y.
(-25%)

