The Term Structure of Interest Rates

What affects interest rates?

- Risk for a specific investment.
- Collaterals.
- Prevailing cost of capital.
- Length of time.

The Term Structure of Interest Rates

What affects interest rates?

- Risk for a specific investment.
- Collaterals.
- Prevailing cost of capital.
- Length of time.

Definition
A term structure is a relationship between the term of a loan and its interest rate.

The US Treasury Yield Curve

Date	1 Mo	2 Mo	3 Mo	6 Mo	1 Yr	2 Yr	3 Yr	5 Yr	7 Yr	10 Yr	20 Yr	30 Yr	
03/01/2022	0.11	0.21	0.32	0.60	0.91	1.31	1.47	1.56	1.67	1.72	2.19	2.11	
03/02/2022	0.13	0.24	0.34	0.68	1.06	1.50	1.67	1.74	1.83	1.86	2.32	2.24	
03/03/2022	0.19	0.25	0.38	0.69	1.08	1.53	1.69	1.74	1.82	1.86	2.32	2.24	
03/04/2022	0.15	0.21	0.34	0.69	1.05	1.50	1.62	1.65	1.70	1.74	2.23	2.16	
03/07/2022	0.17	0.23	0.38	0.75	1.07	1.55	1.68	1.71	1.77	1.78	2.29	2.19	
Date	1 Mo	2 Mo	3 Mo	4 Mo	6 Mo	1 Yr	2 Yr	3 Yr	5 Yr	7 Yr	10 Yr	20 Yr	30 Yr
04/03/2023	4.70	4.79	4.90	4.98	4.88	4.60	3.97	3.73	3.52	3.48	3.43	3.78	3.64
04/04/2023	4.66	4.80	4.88	4.90	4.80	4.50	3.84	3.60	3.39	3.38	3.35	3.72	3.60
04/05/2023	4.62	4.77	4.86	4.90	4.82	4.43	3.79	3.55	3.36	3.34	3.30	3.67	3.56
04/06/2023	4.57	4.85	4.91	4.98	4.93	4.51	3.82	3.59	3.37	3.34	3.30	3.66	3.54
04/07/2023	4.56	4.90	4.95	5.07	4.95	4.61	3.97	3.72	3.49	3.45	3.39	3.73	3.61

The US Treasury Yield Curve

Figure: YC 3/22
Figure: YC 4/23

Yield Curves vs Credit Rating

Figure: S\&P Credit Rating, Wikipedia 3/22

Term Structure as a Function

Definition

We denote $s_{0}(t)$ the effective annual interest rate for borrowing money at time 0 to be repaid at time t.

Term Structure as a Function

Definition

We denote $s_{0}(t)$ the effective annual interest rate for borrowing money at time 0 to be repaid at time t.

$s_{0}(t)$ is the yield rate of a $\mathbf{0}$-coupon bond with term t.

Term structure of spot rate and the Yield Curve

The term structure of interest rates is the collection $s_{0}(t)$ of 0 -coupon yield rates. The yield rates $s_{0}(t)$ are called spot rates of interest.

The term structure depends on when the present, i.e., $t=0$, occurs, and it typically changes from day to day.

Pricing Assets with the Yield Curve

If interest rates are smaller for short term loans than for long term loans, we should discount future money more if farther in the future.

- 0-coupon bond with term t
- Accumulation factor at time t
- Net Present Value

Figure: YC 11/13/06
Figure: YC 8/26/19

Usual YC (March 2022)

Pricing Bonds with the Yield Curve

Example

Suppose we have a standard bond with F, r, n. If the term structure is $\left(s_{0}(t)\right)$, how should we price this bond?

Exercise

6.1.1

You are given the following term structure:

$$
r_{1}=.15, \quad r_{2}=.10, \quad r_{3}=.05
$$

These are effective annual rates of interest for zero coupon bonds of 1,2 and 3 years maturity, respectively. A newly issued 3 -year bond with face amount 100 has annual coupon rate 10%, with coupons paid once per year starting one year from now.

Find the price and effective annual yield to maturity of the bond.
(111.98, 5.56\%)

Lecture 35 April 19, 2023

Term Structure

Interest rate depends on the term with $s_{0}(t)$ the annual interest rate for a loan taken now and due at time t.

$$
a(t)=(1+\underbrace{i}_{s_{0}(t)})^{t}
$$

The term structure enters computations ONLY via $a(t)$.

Bond example

TREASURY AUCTION RESULTS

Term and Type of Security	2-Year Note
CUSIP Number	$91282 \mathrm{CGU9}$
Series	AZ-2025
Interest Rate	$3-7 / 8 \%$
High Yield 1	3.954%
Allotted at High	13.09%
Price	99.849511
Accrued Interest per \$1,000	None
Median Yield ${ }^{2}$	3.870%
Low Yield 3	3.800%
Issue Date	March 31, 2023

Type	Yield	Price
High yield/Low price	3.954%	99.849511
Median yield/Median price	3.870%	100.009534
Low yield/High price	3.800%	$\mathbf{1 0 0 . 1 4 3 1 3 7}$

Bond example

Yield curve on $3 / 27 / 2023$

Computed price of $3 / 27 / 2023$ bond:

$$
P=99.922638
$$

Constructing the Yield Curve

If we know the term structure $\left(s_{0}(t)\right)$ for $t \leq n$ we can price annual bonds with term n :

$$
P_{F, r, n}=\frac{F r}{1+s_{0}(1)}+\frac{F r}{\left(1+s_{0}(2)\right)^{2}}+\cdots+\frac{F r+F}{\left(1+s_{0}(n)\right)^{n}}
$$

Constructing the Yield Curve

If we know the term structure $\left(s_{0}(t)\right)$ for $t \leq n$ we can price annual bonds with term n :

$$
P_{F, r, n}=\frac{F r}{1+s_{0}(1)}+\frac{F r}{\left(1+s_{0}(2)\right)^{2}}+\cdots+\frac{F r+F}{\left(1+s_{0}(n)\right)^{n}} .
$$

Yield Curve from Bonds

If we looked at the prices of many bonds of different kinds of terms, we could obtain many price equations and deduce the term structure of interest rates, in other words we can construct the yield curve.

Exercise

6.1.5

You are given the following information for 4 bonds. All coupon and yield-to-maturity rates are nominal annual convertible twice per year.

Bond	Time to Maturity	Coupon Rate	YTM
1	$1 / 2$-year	4%	.05
2	1 -year	6%	.10
3	$11 / 2$-year	4%	.15
4	2 -year	8%	.15

Find the associated term structure for zero coupon bonds with maturities of $1 / 2$-year, 1 -year, $11 / 2$-year, and 2 -year (quotations should be nominal annual rates convertible twice per year).

Exercise

6.1.5

You are given the following information for 4 bonds. All coupon and yield-to-maturity rates are nominal annual convertible twice per year.

Bond	Time to Maturity	Coupon Rate	YTM
1	$1 / 2$-year	4%	.05
2	1 -year	6%	.10
3	$11 / 2$-year	4%	.15
4	2 -year	8%	.15

Find the associated term structure for zero coupon bonds with maturities of $1 / 2$-year, 1 -year, $11 / 2$-year, and 2 -year (quotations should be nominal annual rates convertible twice per year).
(Prices 99.512195, 96.281179, 85.697108, 88.277358, Spot rates $5 \%, 10.078 \%, 15.151 \%, 15.23 \%$)

Forward Interest Rates

Suppose we are given a yield curve/term structure $\left(s_{0}(t)\right)$. The forward interest rate between t_{1} and t_{2} is the implied constant interest rate $i\left(t_{1}, t_{2}\right)$ for a loan between t_{1} and t_{2}.

Implied by what? By

$$
a\left(t_{1}\right) a\left(t_{1}, t_{2}\right)=a\left(t_{2}\right)
$$

Forward Interest Rates

Suppose we are given a yield curve/term structure $\left(s_{0}(t)\right)$. The forward interest rate between t_{1} and t_{2} is the implied constant interest rate $i\left(t_{1}, t_{2}\right)$ for a loan between t_{1} and t_{2}.

Implied by what? By

$$
\begin{aligned}
a\left(t_{1}\right) a\left(t_{1}, t_{2}\right) & =a\left(t_{2}\right) \\
\left(1+s_{0}\left(t_{1}\right)\right)^{t_{1}}\left(1+i\left(t_{1}, t_{2}\right)\right)^{t_{2}-t_{1}} & =\left(1+s_{0}\left(t_{2}\right)\right)^{t_{2}}
\end{aligned}
$$

Exercise

6.3.5

The following term structure is given as effective annual rates of interest on zero coupon bonds:
1-year maturity: 6\% 2-year maturity: 7\% 3-year maturity: 9\%
(a) Find (i) the 1-year forward effective annual interest rate for a 1-year period, $f_{[1,2]}$ and (ii) the 2-year forward effective annual interest rate for a 1-year period, $f_{[2,3]}$.
(b) The effective annual rate of interest for a 4-year zero coupon bond is r_{4}. Find the minimum value of r_{4} needed so that $f_{[3,4]} \geq f_{[2,3]}$, where $f_{[3,4]}$ is the 3-year forward effective annual interest rate for a 1-year period and $f_{[2,3]}$. is found in part (a).
($8.01 \%, 13.11 \%$, and $\geq 10.01 \%$)

Lecture 36 April 13, 2022

Russia Yield Curve - 4 Apr $2022 \equiv$
Russia Government Bonds

Figure: $D_{0.5}($ Russia vs US$)=9.5 \%$

Exercise

The term structure of interest rates in the capital markets is currently the following

0.5	5%
1	7%
1.5	9%
2	11%
2.5	9%
≥ 3	7%

What is the 1 -year forward yield curve?

$$
\begin{gathered}
\text { 1-year forward } 0.5 \\
1 \text {-year forward } 1 \\
\text { 1-year forward } 1.5 \\
\text { 1-year forward } 2 \\
\text { 1-year forward } 2.5 \\
1 \text {-year forward } \geq 3
\end{gathered}
$$

Exercise

The term structure of interest rates in the capital markets is currently the following

0.5	5%
1	7%
1.5	9%
2	11%
2.5	9%
≥ 3	7%

What is the 1-year forward yield curve?

1-year forward 0.5	13.11%
1-year forward 1	15.15%
1-year forward 1.5	10.35%
1-year forward 2	7%
1-year forward 2.5	7%
1-year forward ≥ 3	7%

Yield Curve as a function from 0 to ∞

Suppose you are quoted a term structure/yield curve $\left(s_{0}(t)\right)$ at a discrete set of points? How do you interpolate in between these dates?

A convenient way is to interpolate linearly.

Interest Rate model from Yield Curve

Setup

We would like to model the future behavior of interest rates over short periods of time. Say i_{t} is the (effective annual) interest rate that we will pay at time t for an overnight loan.

Model:

$$
i_{t}=i_{\text {forward }}(t, t+\underbrace{1 \text { day }}_{h}) .
$$

Solve:

$$
\left(1+s_{0}(t+h)\right)^{t+h}=\left(1+s_{0}(t)\right)^{t}\left(1+i_{t}\right)^{h}
$$

Interest Rate model from Yield Curve: 3/29/2022

Figure: Interest Rate Model from Yield Curve

Interest Rate Spreads

A can borrow at $i_{A}, \mathrm{~B}$ can borrow at i_{B}.
The spread $i_{A}-i_{B}$ measures the excess risk for lending to A compared to B.

- Governments borrowing from the markets (bonds)
- Banks borrowing from governments
- Banks borrowing from banks
- Investors borrowing from banks
- Companies borrowing from the markets (bonds)
- Persons borrowing from banks

Interest Rate Spreads

A can borrow at $i_{A}, \mathrm{~B}$ can borrow at i_{B}.
The spread $i_{A}-i_{B}$ measures the excess risk for lending to A compared to B.

- Governments borrowing from the markets (bonds)
- Banks borrowing from governments
- Banks borrowing from banks
- Investors borrowing from banks
- Companies borrowing from the markets (bonds)
- Persons borrowing from banks
- Implied interest rates without any borrowing happening

Example

We computed that on $2 / 16 / 2023$ Apple stocks had an implied IR from DDM of 9.43% compared to 3.92% long term for US Bonds.

Interest Rate Spreads

Figure: YC Spread US vs Romania 4/4/22

Dividend Discount Model: Take 2

The DDM prices a stock as the PV of all future dividend
payments $P=\sum_{t=1}^{\infty} \mathrm{PV}\left(d_{t}\right)$.

In a world where investors are risk neutral, i.e., they don't care about the extra risk of investing in stock compared to the safety of the US Treasury yield curve $s_{0}(t)$:

$$
P=\sum_{t=1}^{\infty} \frac{d_{t}}{\left(1+s_{0}(t)\right)^{t}}
$$

We've already seen that Apple is charged for excess risk!

Apple Stock Price on 2/16/2023

The discrepancy between the price of stock and the DDM price can be interpreted as saying that the market assesses an excess risk penalty for Apple vs US.

Let's compute this excess risk as the value of x such that term structure $s_{W}(t)$ that we use to compute PV of Walmart dividends is a parallel shift of the US Treasury yield curve:

$$
s_{W}(t)=s_{0}(t)+x, \text { for all } t
$$

Tesla Interest Rate Spread

Tesla hasn't paid dividends yet, so how could we possible study its stock price? Instead of DDM we'll use bonds to price Tesla's IR spread.

Bond lssuer	Bond Currency
Tesla Inc	USD
Guarantor	Annual Coupon Rate (\% p.a.)
Tesla Energy Operations Inc/DE	5.300
ISIN	Coupon Type
USU8810LAA18	Fixed
CUSIP	Reference Rate
AO7577130	-
Bond Type	Annual Coupon Frequency
High Yield Corporate	Semi Annually
Bond Sector	Min. Investment Quantity
Consumer Discretionary	USD 2,000
Bond Sub Sector	Incremental Quantity
Automobiles	USD 1,000

Issue Size
1,800,000,000
Announcement Date
11 Aug 2017
Issue Date
18 Aug 2017
Maturity Date
15 Aug 2025
Years to Maturity
4.326

Issue / Reoffer Price 100.000

Bond Credit Rating (S\&P/ Fitch)
BB/ N.R ()
1ssuer Credit Rating (S\&P/Fitch)
BB/ N.R (3)
Exchange Listed
Others
Seniority
Senior Unsecured
Sukuk lrivesting
Conventional

Figure: TSLA 1.8 b bond maturing $8 / 15 / 25$, called on $8 / 15 / 21$

Pricing TSLA Bond on 4/16/21

TSLA 5.300\% 15Aug2025 Corp (USD)

益 Tesla Inc

KLatest Quotes as of 16 Apr 2021
Tesla Inc. designs, manufactures, and sells high-performance electric vehicles and electric vehicle powertrain components. The Company owns its sales and service network and sells electric powertrain components to other automobile manufacturers. Tesla serves customers worldwide.

Ask Yield to Maturity (\% p.a) (1)	Ask Yield to Worst (\% p.a) (1)	Indicative Ask Price USD (${ }^{\text {(}}$	Bond Complexity
4.216	0.452	104.245	Moderate
Bid Yield to Maturity (\%p.a) (1)	Bid Yield to Worst (\% p.a) (1)	Indicative Bid Price USD (3)	Investor Profile
4.299	1.417	103.911	High Yield Seeker

Price (bid) of the bond using US YC

$$
P=\frac{F r}{\left(1+s_{0}\left(t_{1}\right)\right)^{t_{1}}}+\frac{F r}{\left(1+s_{0}\left(t_{2}\right)\right)^{t_{2}}}+\cdots+\frac{F r+F}{\left(1+s_{0}\left(t_{n}\right)\right)^{t_{n}}}
$$

Price (bid) of the bond using parallel shift up of the US YC

$$
P=\frac{F r}{\left(1+s_{0}\left(t_{1}\right)+r\right)^{t_{1}}}+\frac{F r}{\left(1+s_{0}\left(t_{2}\right)+r\right)^{t_{2}}}+\cdots+\frac{F r+F}{\left(1+s_{0}\left(t_{n}\right)+r\right)^{t_{n}}}
$$

Pricing TSLA Bond on 4/16/21

	A	B	c	D	E	F	G	H	1	J	K
1	YC	04/16/21			TSLA	5.30\%	Bid price	103.911		r	3.88\%
2	t	t in years	YC rate		Coupons	Coupon Amt	Time until pay	YC rate at pay	PV @ YC	YC+r	PV @ YC+r
3	1 m	0.083333333	0.02\%		8/15/2021	2.65	0.3315068493	0.03\%	2.649767044	3.91\%	2.61621789
4	2 m	0.166666666	0.02\%		2/15/2022	2.65	0.8356164384	0.05\%	2.648817395	3.93\%	2.565104633
5	3 m	0.25	0.02\%		8/15/2022	2.65	1.331506849	0.09\%	2.646715986	3.97\%	2.514710936
6	6 m	0.5	0.04\%		2/15/2023	2.65	1.835616438	0.14\%	2.643028303	4.02\%	2.463076788
7	1 y	1	0.06\%		8/15/2023	2.65	2.331506849	0.22\%	2.636469735	4.10\%	2.410685519
8	2 y	2	0.16\%		2/15/2024	2.65	2.835616438	0.31\%	2.62679481	4.19\%	2.355907132
9	$3 y$	3	0.34\%		8/15/2024	2.65	3.334246575	0.42\%	2.612877185	4.30\%	2.299165507
10	$5 y$	5	0.84\%		2/15/2025	2.65	3.838356164	0.55\%	2.594758338	4.43\%	2.239697985
11	7 y	7	1.26\%		8/15/2025	102.65	4.334246575	0.67\%	99.70146495	4.55\%	84.44653148
12	10y	10	1.59\%								
13	20 y	20	2.15\%					P with YC	120.7606938		103.9110979
14	30y	30	2.26\%					YTM with YC	0.62\%		
15								Market YTM	4.30\%		
16								YC Spread	3.88\%		
17											
18								TSLA Bid	103.911		

Pricing TSLA Bond $4 / 16 / 21$ vs $4 / 26 / 21$

	A	B	c	D	E	F	G	H
1	YC rate				TSLA	Bid prices	103.911	103.916
2	t	4/16/21	4/26/2021		Coupons	Coupon Amt	PV 4/16/21	PV 4/26/21
3	1m	0.02\%	0.01\%		8/15/2021	2.65	2.65	2.65
4	2 m	0.02\%	0.02\%		2/15/2022	2.65	2.65	2.65
5	3 m	0.02\%	0.03\%		8/15/2022	2.65	2.65	2.65
6	6 m	0.04\%	0.03\%		2/15/2023	2.65	2.64	2.64
7	1 y	0.06\%	0.07\%		8/15/2023	2.65	2.64	2.64
8	2 y	0.16\%	0.16\%		2/15/2024	2.65	2.63	2.63
9	$3 y$	0.34\%	0.34\%		8/15/2024	2.65	2.61	2.61
10	5 y	0.84\%	0.83\%		2/15/2025	2.65	2.59	2.60
11	7 y	1.26\%	1.26\%		8/15/2025	102.65	99.70	99.78
12	10y	1.59\%	1.58\%					
13	$20 y$	2.15\%	2.14\%			P with YC	120.76	120.84
14	30y	2.26\%	2.25\%			TSLA spread	3.88\%	3.92\%
15								

Why might a bond price have increased in 10 days?

Pricing TSLA Bond $4 / 16 / 21$ vs $4 / 26 / 21$

	A	B	c	D	E	F	G	H
1	YC rate				TSLA	Bid prices	103.911	103.916
2	t	4/16/21	4/26/2021		Coupons	Coupon Amt	PV 4/16/21	PV 4/26/21
3	1m	0.02\%	0.01\%		8/15/2021	2.65	2.65	2.65
4	2 m	0.02\%	0.02\%		2/15/2022	2.65	2.65	2.65
5	3 m	0.02\%	0.03\%		8/15/2022	2.65	2.65	2.65
6	6 m	0.04\%	0.03\%		2/15/2023	2.65	2.64	2.64
7	1y	0.06\%	0.07\%		8/15/2023	2.65	2.64	2.64
8	2 y	0.16\%	0.16\%		2/15/2024	2.65	2.63	2.63
9	$3 y$	0.34\%	0.34\%		8/15/2024	2.65	2.61	2.61
10	$5 y$	0.84\%	0.83\%		2/15/2025	2.65	2.59	2.60
11	7 y	1.26\%	1.26\%		8/15/2025	102.65	99.70	99.78
12	$10 y$	1.59\%	1.58\%					
13	$20 y$	2.15\%	2.14\%			P with YC	120.76	120.84
14	30 y	2.26\%	2.25\%			TSLA spread	3.88\%	3.92\%
15								

Why might a bond price have increased in 10 days?

- Bond prices increase between coupon dates with constant IR.
- TSLA excess risk perceived to have increased.
- YC change: overall market risk decreased.

Lecture 37 April 24, 2023

IR Spread and Implied Probability of Default

Setup:

- A is a "risk-free" asset with term structure $s_{A}(t)$.
- B is a risky asset with term structure $s_{B}(t)$.

The implied probability of default D_{t} is the (implied) probability such that
$\mathrm{PV}_{A}($ cash at time $t)=\mathrm{PV}_{B}\binom{$ cash at time t with prob }{D_{t} of getting nothing }.
Two options

- Lend money to B
- Lend money to A knowing that with probability D_{t}, A refuses to repay.

Pricing the Implied Probability of Default

Example: US vs Russia

Russia Yield Curve - 4 Apr 2022
Russia Government Bonds

10\%

— Russia (4 Apr 2022) 1M ago 6M ago

Example: US vs Russia

$$
s_{\mathrm{US}}(0.5)=1.09 \% \text { vs } s_{\text {Russia }}(0.5)=23.42 \%
$$

$$
\begin{aligned}
D_{0.5}(\text { Russia vs US }) & =1-\left(\frac{1+s_{\mathrm{US}}(0.5)}{1+s_{\text {Russia }}(0.5)}\right)^{0.5} \\
& =1-\left(\frac{1.0109}{1.2342}\right)^{0.5} \\
& =9.5 \%
\end{aligned}
$$

TED Spread USD LIBOR vs US 10/08

The TED Spread is a spread index between 3-month LIBOR quoted in USD ("Eurodollars") vs 3-month TBills. It measures the excess risk of banks borrowing in USD on the international market compared to the US government.

TED Spread USD LIBOR vs US 10/08

 On 10/10/08 the TED spread was$$
s_{\mathrm{US}}(0.25)=0.84 \% \quad s_{\mathrm{LIBOR}}(0.25)=5.42 \% \quad \mathrm{TED}=4.58 \%
$$

What is the implied probability of default for commercial banks borrowing USD on the international markets over the next 3 months?

So what is "risk-free" anyway?

We usually take US Treasury securities to be risk-free.

Figure: 1 month Libor USD vs Figure: 3 month Libor USD vs T-Bill T-Bill

