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Chapter 3
Exam next week
Review session Sunday 9-10pm Hayes-Healy 229



Loans and Amortizations

Amortization

An amortization for a loan is a repayment of the loan
over several installments.

0 1 2 3 n

L

K1 K2 K3
. . . Kn

Questions:

How to determine the value of the loan given the
payments?

How to structure the payments to repay the loan exactly?

How much money is still owed after a certain time?



Loans and Amortizations

Conceptual Answers

To determine the relation between L and K1, K2, . . . , Kn

we write the equation of value.

For determining how much is still owed, the rule of thumb
is that interest gets paid first.

Example
1 (Lump sum loan) K1 = K2 = . . . = Kn−1 = 0 and
Kn > 0.

2 (Level payment loan) K1 = K2 = . . . = Kn (mortgages,
car loans).

3 (Variable interest rates) The interest rate can change
from payment to payment.
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Outstanding Balance, Interest, Principal Repaid
Terminology
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I1 I2 It−1 It In

OB1 OB2 OBt−1 OBt OBn

Interest rate it from time t− 1 to time t.
Outstanding balance OBt at time t, i.e., how much is still
owed on the loan after Kt. OB0 = L and OBn = 0.

Interest It, accrued from time t− 1 to time t.

It = OBt−1 ·it.
Interest added to balance, then payment deducted:

OBt = OBt−1+It −Kt.

Principal repaid is the portion of the payment that’s not
to cover interest (“interest paid first”):

PRt = Kt − It.
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Equations of Value

There are two ways to set up the equation of value:

Forward looking EoV: the OB equals the present value
of all future payments.

OBt = PVt(Kt+1) + · · ·+ PVt(Kn)

= Kt+1ν + · · ·+Knν
n−t.

Backward looking EoV: the OB equals the present
value of the initial loan minus the present value of all
previous payments.

OBt = FVt(L)− FVt(K1)− · · · − FVt(Kt)

= L(1 + i)t −K1(1 + i)t−1 − · · · −Kt−1(1 + i)−Kt.
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Example
3.1.2

(OB40 = 6889.11 and L = 29452.83)
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Amortizations

0 1 2 t− 1 t n

K1 K2
. . . Kt−1 Kt

. . . Kn

L OB1 OB2
. . . OBt−1 OBt

. . . OB1

I1 I2 It−1 It In

i1 i2 it−1 it in

It = OBt−1 ·it
PRt = Kt − It

OBt = OBt−1−PRt = OBt−1+It −Kt

(Forward) OBt = Kt+1ν +Kt+2ν
2 + · · ·+Knν

n−t.

(Backward) OBt = L(1 + i)t −K1(1 + i)t−1 − · · · −Kt.



Exercise
3.1.4

0 1 2 3 4
i = 0% i(12) = 6% i(12) = 6% i(12) = 6%

i(12) = 3% i(12) = 5% i(12) = 5% i(12) = 5%



Exercise

Say X and Y are the level payments for the two options. The
forward equations are

20k = PVt=0(Annuity12 0%) + PVt=0(Annuity36 6%
12
)

= Xa12 0% + ν120%Xa36 0.5%

= X
(
a12 0% + ν120%a36 0.5%

)
X = 445.72

20k = PVt=0(Annuity12 3%
12
) + PVt=0(Annuity36 5%

12
)

= Y a12 0.25% + ν120.25%Y a36 5%
12

= Y
(
a12 0.25% + ν120.25%a36 5%

12

)
Y = 452.61



Amortization Table

An amortization table is a table containing OB, I, K,
PR at each time period.

t it It Kt PRt OBt

0 − − − − L
1 i1 I1 K1 K1 − I1 L− PR1

...
t it OBt−1 ·it Kt PRt = Kt − It OBt−1−PRt

...
n in OBn−1 ·in Kn PRn = Kn − In 0

T stands for total:

KT = K1 +K2 + · · ·+Kn IT = I1 + I2 + · · ·+ In

PRT = PR1+PR2+ · · ·+ PRn PRT = KT − IT = L



Basic example
A 3 year loan has interest rates 5% over the first year, 15%
over the second, and 10% over the third, and yearly payments
of 100, 300, 200. What is the amount of the loan? Construct
the amortization table.

L =
K1

a(1)
+

K2

a(2)
+

K3

a(3)

=
100

1.05
+

300

1.05 · 1.15
+

200

1.05 · 1.15 · 1.1
= 494.26

t it It Kt PRt OBt

0 494.26
1 0.05 24.71 100 75.29 418.97
2 0.15 62.85 300 237.15 181.82
3 0.1 18.18 200 181.82 0



Basic example
A 3 year loan has interest rates 5% over the first year, 15%
over the second, and 10% over the third, and yearly payments
of 100, 300, 200. What is the amount of the loan? Construct
the amortization table.

L =
K1

a(1)
+

K2

a(2)
+

K3

a(3)

=
100

1.05
+

300

1.05 · 1.15
+

200

1.05 · 1.15 · 1.1
= 494.26

t it It Kt PRt OBt

0 494.26
1 0.05 24.71 100 75.29 418.97
2 0.15 62.85 300 237.15 181.82
3 0.1 18.18 200 181.82 0



Example
A 100k loan is being repaid in 10 years, with level annual
payments beginning one year after the time of the loan. The
load carries an adjustable interest rate, with 3% for the first 5
years, and thereafter indexed to a standard interest rate index
R. At the time of the loan, the index R is projected to be
(2 + t/5)% over the t-th year. What is the amortization table?

t it a(t)

1 3.0% 1.03000000000000
2 3.0% 1.06090000000000
3 3.0% 1.09272700000000
4 3.0% 1.12550881000000
5 3.0% 1.15927407430000
6 3.2% 1.19637084467760
7 3.4% 1.23704745339664
8 3.6% 1.28158116171892
9 3.8% 1.33028124586424
10 4.0% 1.38349249569881



Example

t it It Kt PRt OBt

0 % 100000.0
1 3.0% 3000.0 11794.18 8794.18 91205.82
2 3.0% 2736.17 11794.18 9058.0 82147.82
3 3.0% 2464.43 11794.18 9329.74 72818.08
4 3.0% 2184.54 11794.18 9609.63 63208.44
5 3.0% 1896.25 11794.18 9897.92 53310.52
6 3.2% 1705.94 11794.18 10088.24 43222.28
7 3.4% 1469.56 11794.18 10324.62 32897.66
8 3.6% 1184.32 11794.18 10609.86 22287.8
9 3.8% 846.94 11794.18 10947.24 11340.56
10 4.0% 453.62 11794.18 11340.56 0



Example
Imagine now that you are at the end of the 5th year, and
interest rates went through the roof, they swing wildly
between 3% and 7%. You’ve been paying 11794.18 yearly,
because that’s what the expected rate was to repay the loan
exactly. At year 5, you have the option to switch from R to
constant 5% interest rate for the remainder of the loan. What
would the level payments be with this new fixed interest rate?
(12313.39)
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Amortization table for general loan:

t it It Kt PRt OBt

0 − − − − L
1 i1 I1 K1 K1 − I1 L− PR1

...
t it OBt−1 ·it Kt PRt = Kt − It OBt−1−PRt

...
n in OBn−1 ·in Kn PRn = Kn − In 0



Amortizations with level payments

If a loan of L is repaid with level payments at regular
intervals and constant interest rate i then.

L = Kan i = K
1− νn

i

OBt = Kan−t i = K
1− νn−t

i



Amortization table with level payments
Level payment K, level interest rate i.

t it It Kt PRt OBt

0 Kan i

1 i K(1− νn) K Kνn Kan−1 i
...

t i K(1− νn−t+1) K Kνn−t+1 Kan−t i
...

n i K(1− ν) K Kν 0



Exercise
3.2.17

(2/3)



Mortgage refinancing
A 30-year 250k mortgage is taken out at 4% nominal monthly.
After 10 years, an opportunity arises to refinance the balance
on the original mortgage as a 20-year mortgage. For what
nominal interest rate does it make financial sense to refinance,
knowing there is a 4k refinancing charge?

0 10 30

K1 K1 K1 K1 K1 K1

K2 K2 K2 K2

i(12) = 4% i(12) = 4% i(12) = 4% i(12) = 4% i(12) = 4% i(12) = 4%

i(12) = x% i(12) = x% i(12) = x% i(12) = x%

(K1 = 1193.54, L2 = 200959.9, x < 3.713%).


