Basics of Representation Theory

1 Basics

Definition 1. • Let F be a field. A noncommutative ring A is said to be a finite dimensional F-algebra if dim_F $A < \infty$ and it is equipped with a ring homomorphism $F \to Z(A)$ taking 1 to 1.

- By a finite dimensional module M over A we mean a finite dimensional left A-module.
- The algebra A is said to be simple if its only two-sided ideals are 0 and A.
- A is said to be a division algebra if $A \{0\}$ is a group under multiplication in the algebra.
- A finite dimensional A-module M is simple if its only A-submodules are 0 and M.

Definition 2. If $(A, +, \times)$ is an *F*-algebra define the opposite *F*-algebra $(A, +, \times^{\text{op}})$ where the set is *A*, the addition + is the same as in *A* but multiplication is $a \times^{\text{op}} b = b \times a$.

- **Lemma 3** (Schur). 1. If M and N are simple A-modules and $f \in \text{Hom}_A(M, N)$ then either f = 0 or f is an isomorphism.
 - 2. If M is simple then $\operatorname{End}_A(M)$ is a division algebra.

Proof. Note that ker $f \subset M$ and $\operatorname{Im} f \subset N$ so either ker f = 0 or ker f = M and either $\operatorname{Im} f = 0$ or $\operatorname{Im} f = N$.

Lemma 4. Let M be a finite-dimensional A-module. The following are equivalent:

- 1. $M = N_1 \oplus \cdots N_r$ where N_i are simple.
- 2. $M = \sum N_i$ with simple $N_i \subset M$.
- 3. If $N \subset M$ then there exists $P \subset M$ such that $M = N \oplus P$.
- 4. If $N \subset M' \subset M$ there exists $P \subset M'$ such that $M' = N \oplus P$.

Proof. 1 implies 2 is vacuous.

2 implies 3: choose a maximal set of simple submodules $Q_1, \ldots, Q_r \subset M$ such that $N + Q_1 + \cdots + Q_r = N \oplus Q_1 \oplus \cdots \oplus Q_r$. If $N \oplus Q_1 \oplus \cdots \oplus Q_r \neq M$ choose a simple $Q_{r+1} \subset M$ such that $Q_{r+1} \not\subset N \oplus Q_1 \oplus \cdots \oplus Q_r$. Since Q_{r+1} is simple it follows that $N \oplus Q_1 \oplus \cdots \oplus Q_r \cap Q_{r+1} = 0$ so $N + Q_1 + \cdots + Q_{r+1} = N \oplus Q_1 \oplus \cdots \oplus Q_{r+1}$ contradicting the maximality of r.

3 implies 4: If $M = N \oplus Q$ then $M' = N \oplus (Q \cap M')$.

4 implies 1: choose $N \subset M$ a simple submodule. Then $M = N \oplus P$ and inductively we get the required decomposition.

Definition 5. When the equivalent conditions of the previous lemma hold the module M is said to be semisimple.

Note 6. It is left as an exercise that a semisimple module decomposes uniquely (up to reordering) as a direct sum of simple submodules.

Corollary 7. Semisimplicity is preserved under direct sums and passage to quotients and submodules.

Corollary 8. If A is a semisimple A-module then all finite dimensional A-modules are semisimple. In that case A is said to be a (left) semisimple ring.

Proof. If M is any finite dimensional A-module then $A^r \to M$ for some r and M must be semisimple. \Box

Corollary 9. Let M be a finite dimensional A module such that the action of A on M is faithful, i.e., if for $a \in A$ we have am = 0 for all $m \in M$ then a = 0. If M is semisimple then A is semisimple.

Corollary 10. if A is simple as a ring, i.e., there are no nontrivial two-sided ideals, then it is left semisimple.

Proof. Let $M \subset A$ a simple left A-submodule. Then $\sum_{a \in A} Ma \subset A$ is a two-sided ideal so $\sum_{a \in A} Ma = A$. Since A is then a semisimple A-module it follows that A is a semisimple ring.

2 Structure of Algebras

Lemma 11 (Wedderburn). If A is a finite dimensional semisimple F-algebra then

$$A \cong M_{n_1 \times n_1}(D_1) \oplus \dots \oplus M_{n_r \times n_r}(D_r)$$

where D_i are division algebras over F.

Any algebra of the above form is semisimple and the expression is unique up to reordering. Moreover, the semisimple modules over A are $D_i^{n_i}$ where the action is given by matrix multiplication.

Proof. Write $A = N_1^{n_1} \oplus \cdots \oplus N_r^{n_r}$ with N_i pairwise nonisomorphic simple modules. Then $\operatorname{End}_A(A) = \oplus \operatorname{End}_A(N_i^{n_i}) = \oplus M_{n_i \times n_i}(D_i)$ where $D_i = \operatorname{End}_A(N_i)$ is a division algebra. Have a natural map $A^{\operatorname{op}} \cong \operatorname{End}_A(A)$ given by $a \mapsto (b \mapsto ba)$ and so

$$A \cong \oplus M_{n_i \times n_i}(D_i^{\mathrm{op}})$$

Remark 12. The above lemma shows that A is simple if and only if $A = M_n(D)$ where D is a division algebra.

Corollary 13. If A is a semisimple F-algebra and M and N are finite dimensional A modules then $M \cong N$ if and only if $\operatorname{Tr} a|_{\wedge^i M} = \operatorname{Tr} a|_{\wedge^i N}$ for all $i \ge 0$ and $a \in A$. If F has characteristic 0 then it is enough to check $\operatorname{Tr} a|_M = \operatorname{Tr} a|_N$ for all a.

Proof. Let $M \cong \oplus P_i^{s_i}$ and $N \cong \oplus P_i^{t_i}$ where the P_i are nonisomorphic simple A-modules. Clearly $M \cong N$ if and only if $s_i = t_i$ for all i, if and only if $\dim e_i M = \dim e_i N$ for $i = 1, \ldots, r$ where e_i is the projector onto P_i : $e_i^2 = e_i, e_i = 1$ on P_i and $e_i = 0$ on $P_j \neq P_i$. Then $\operatorname{Tr} e_i|_{\wedge^j M} = \binom{\dim e_i M}{j}$ for all j and the condition on traces becomes $\binom{s_i \dim P_i}{j} = \binom{t_i \dim P_i}{j}$ for all j.

If F has characteristic 0 then $\operatorname{Tr} e_i|_M = s_i \dim P_i$ and $\operatorname{Tr} e_i|_N = t_i \dim P_i$ so if $\operatorname{Tr} e_i|_M = \operatorname{Tr} e_i|_N$ then $s_i = t_i$ for all i. If F has positive characteristic then the condition on traces implies that $(1+x)^{s_i \dim P_i} = (1+x)^{t_i \dim P_i}$ which implies that $s_i = t_i$ for a variable x.

Definition 14. The F-algebra A is said to be a central simple algebra if it is a simple finite dimensional algebra such that $F \cong Z(A)$.

Lemma 15 (Jacobson density theorem). Let A be a finite dimensional F-algebra and let M be a simple A-module. Let $D = \text{End}_A(M)$ (a division algebra by Schur's lemma). Let $m_1, \ldots, m_r \in M$ be linearly independent over D and let $n_1, \ldots, n_r \in M$. Then there exists $a \in A$ such that $am_i = n_i$ for all i. (In other words, "A is close to $\text{End}_D(M)$ ".)

Proof. Let $M = Dm_1 \oplus Dm_2 \oplus \cdots \oplus Dm_r \oplus N$ over D. (This can be done because D is a division algebra, and so it is simple and so M is semisimple as a D-algebra.) Therefore there exists $f \in \text{End}_D(M)$ such that $f(m_i) = n_i$ by linear independence of m_i .

Over A we have $M^r = A(m_1, \ldots, m_r) \oplus P$ and $\operatorname{End}_A(M^r) = M_{r \times r}(D)$ so there exists $h \in M_{r \times r}(D)$ which is projection to $A(m_1, \ldots, m_r)$. Then

$$f \oplus \cdots \oplus f(m_1, \dots, m_r) = (n_1, \dots, n_r)$$
$$f \oplus \cdots \oplus f(h(m_1, \dots, m_r)) = h(f \oplus \cdots \oplus))(m_1, \dots, m_r)$$
$$= h(n_1, \dots, n_r)$$

so $h(n_1, \ldots, n_r) \in A(m_1, \ldots, m_r)$ and the conclusion follows.

Lemma 16. Let A be a central simple K-algebra. Then $A \otimes_K A^{\operatorname{op}} \cong \operatorname{End}_K(A) \cong M_{n \times n}(K)$ where $n = \dim_K A$.

Proof. $A \otimes_K A^{\operatorname{op}}$ acts on A with a left \otimes right action so get $A \otimes_K A^{\operatorname{op}} \to \operatorname{End}_K(A)$. Let $f \in \operatorname{End}_K A$ and let a_1, \ldots, a_n be a basis of A as a K-vector space. Apply the Jacobson density theorem to the $A \otimes_K A^{\operatorname{op}}$ -module A. We may do this because A is a simple $A \otimes_K A^{\operatorname{op}}$ -module. We get that there exists $c \in A \otimes_K A^{\operatorname{op}}$ such that $ca_i = f(a_i)$ for all i. Therefore c maps to f so $A \otimes_K A^{\operatorname{op}} \to \operatorname{End}_K(A)$. A dimension comparison shows that this linear map is an isomorphism. \Box

Corollary 17. If A is a central simple K-algebra and B is any simple K-algebra then $A \otimes_K B$ is a simple K-algebra.

Proof. Let a_1, \ldots, a_n be a basis of A/K. For $i = 1, \ldots, n$ find $c_i \in A \otimes_K A^{\text{op}}$ with $c_i(a_j) = \delta_{ij}$. Let I be a two-sided ideal of $A \otimes_K B$. If $\sum a_j \otimes b_j \in I$ then $\sum c_i(a_j) \otimes b_j \in I$ so $1 \otimes b_i \in I \cap K \otimes_K B$, where $I \cap K \otimes B$ is a two-sided ideal of B. Since B is simple, either $I \cap K \otimes B = 0$, in which case $b_i = 0$ so I = 0, or $I \cap K \otimes B = K \otimes B$ in which case $1 \in I$ so $I = A \otimes B$.

Corollary 18. Let A and B be central simple K-algebras. Then $A \otimes_K B$ is also central simple.

Proof. That $A \otimes B$ is simple follows from the previous corollary. Let a_i be a basis of A/K and let $\sum a_i \otimes b_i \in Z(A \otimes_K B)$. For any $b \in B$ we have $(1 \otimes b)(\sum a_i \otimes b_i) - (\sum a_i \otimes b_i)(1 \otimes b) = \sum a_i \otimes (bb_i - b_i b) = 0$. Therefore $bb_i = b_i b$ for all b so $b_i \in Z(B) = K$. Thus $\sum a_i \otimes b_i \in Z(A \otimes_K K) = Z(A) = K$. \Box

3 The Brauer Group

Definition 19. Two central simple K-algebras A and B are equivalent if there exists a division algebra D and two nonnegative integers r and s such that $A \cong M_{r \times r}(D)$ and $B \cong M_{s \times s}(D)$. Let Br(K) be the set of central simple K-algebras up to equivalence.

Lemma 20. The set Br(K) becomes an abelian group under \otimes_K .

Proof. The identity element is [K] and the inverse of A is A^{op} : $[A][A^{\text{op}}] = [A \otimes_K A^{\text{op}}] = [M_{n \times n}(K)] = [K]$.

Definition 21. For L/K a field extension there is a natural map $Br(K) \to Br(L)$ given by $[A] \mapsto [A \otimes_K L]$. Let $Br(L/K) = ker(Br(K) \to Br(L))$.

Lemma 22 (Double centralizer theorem). Let A be a central simple K-algebra and let $B \subset A$ be a K-subalgebra. Let $C_A(B) = \{c \in A | cb = bc, \forall b \in B\}$ be the centralizer of B in A. Then1

- 1. $C_A(B)$ is simple.
- 2. $\dim_K C_A(B) \dim_K B = \dim_K A$.

3. $C_A(C_A(B)) = B$.

Proof. Since $B \subset A$ it follows there exists n and a division algebra D such that $B \otimes_K A^{\operatorname{op}} = M_{n \times n}(D)$ ($[B][A^{\operatorname{op}}] = [K]$). Therefore there exists an integer r such that $A \cong (D^n)^r$ as a $M_{n \times n}(D) = B \otimes_K A^{\operatorname{op}}$ module. Note that $C_A(B) = \operatorname{End}_{B \otimes_K A^{\operatorname{op}}}(A)$ ($A \cong \operatorname{End}_{A \otimes_K A^{\operatorname{op}}}(A)$). But $\operatorname{End}_{B \otimes_K A^{\operatorname{op}}}(A) = M_{r \times r}(D^{\operatorname{op}})$ which implies that $C_A(B)$ is simple, as matrix algebras are simple.

Also, $\dim_K C_A(B) = r^2 \dim_K D^{\operatorname{op}} = r^2 \dim_K D$ and $\dim_K B \dim_K A = \dim_K (B \otimes_K A^{\operatorname{op}}) = n^2 \dim_K D$. Therefore $\dim_K A = rn \dim_K D$ which implies the second part.

Finally, $B \subset C_A(C_A(B))$ and a dimension comparison implies isomorphism.

Corollary 23. Let D/K be a division algebra. Then $\dim_K D$ is a square number and any maximal subfield of D has dimension $\sqrt{\dim_K D}$.

Proof. Let $L \subset D$ be a maximal subfield. Then $C_D(L) \subset L$. If $L \neq C_D(L)$ choose $x \in C_D(L) - L$ in which case L(x) is a commutative division algebra, so a field, which contradicts the choice of L. Therefore $L = C_D(L)$ and the previous lemma implies that $(\dim_K L)^2 = \dim_K D$.

Corollary 24. Let A be a central simple K-algebra and let L be a maximal subfield of A. Then $A \otimes_K L \cong M_{n \times n}(L)$ for some n, i.e., $[A] \in Br(L/K)$.

Proof. Let $L \subset C_A(L) \cong M_{r \times r}(D)$ for some division algebra D. Then $L \subset Z(C_A(L)) = D$ so $L \subset D$. Again, by maximality of L we deduce that L = D so $C_A(L) \cong M_{r \times r}(L)$, but this implies (as in the proof of the double centralizer theorem) that $L \otimes_K A^{\text{op}} \cong M_{n \times n}(L)$.