Basics of Representation Theory

1 Basics

Definition 1. e Let F be a field. A noncommutative ring A is said to be a finite dimensional F'-algebra
if dimp A < 0o and it is equipped with a ring homomorphism F — Z(A) taking 1 to 1.

e By a finite dimensional module M over A we mean a finite dimensional left A-module.

o The algebra A is said to be simple if its only two-sided ideals are 0 and A.

o A is said to be a division algebra if A — {0} is a group under multiplication in the algebra.
e A finite dimensional A-module M is simple if its only A-submodules are 0 and M.

Definition 2. If (A, +, x) is an F-algebra define the opposite F-algebra (A, 4+, X°P) where the set is A, the
addition + is the same as in A but multiplication is a Xx°? b =b X a.

Lemma 3 (Schur). 1. If M and N are simple A-modules and f € Homa (M, N) then either f =0 or f
is an isomorphism.

2. If M is simple then Enda (M) is a division algebra.

Proof. Note that ker f C M and Im f C N so either ker f = 0 or ker f = M and either Imf = 0 or
Imf=N. O

Lemma 4. Let M be a finite-dimensional A-module. The following are equivalent:
1. M = N1 ®--- N, where N; are simple.
2. M =" N; with simple N; C M.
3. If N C M then there exists P C M such that M = N & P.
4. If N C M' C M there exists P C M’ such that M/ = N & P.

Proof. 1 implies 2 is vacuous.

2 implies 3: choose a maximal set of simple submodules Q1,...,Q, C M such that N+ Q1+ -+ Q, =
NeQ1® - 0Q,. UNPQ1B---®Q, # M choose a simple Q11 C M such that Q,11 Z NGQ1D---DQ,.
Since @41 is simple it follows that N Q1P - @ Q,NQr11 =080 N+Q1+- - +Qr11 = NEQ1E- - - BQri1
contradicting the maximality of .

3implies4: f M = N& Q then M' =N & (QNM').

4 implies 1: choose N C M a simple submodule. Then M = N & P and inductively we get the required
decomposition. O

Definition 5. When the equivalent conditions of the previous lemma hold the module M is said to be
semisimple.

Note 6. It is left as an exercise that a semisimple module decomposes uniquely (up to reordering) as a direct
sum of simple submodules.



Corollary 7. Semisimplicity is preserved under direct sums and passage to quotients and submodules.

Corollary 8. If A is a semisimple A-module then all finite dimensional A-modules are semisimple. In that
case A is said to be a (left) semisimple ring.

Proof. If M is any finite dimensional A-module then A”™ — M for some r and M must be semisimple. [

Corollary 9. Let M be a finite dimensional A module such that the action of A on M is faithful, i.e., if
for a € A we have am =0 for allm € M then a = 0. If M is semisimple then A is semisimple.

Corollary 10. if A is simple as a ring, i.e., there are no nontrivial two-sided ideals, then it is left semisimple.

Proof. Let M C A a simple left A-submodule. Then Z Ma C A is a two-sided ideal so Z Ma = A. Since

acA acA
A is then a semisimple A-module it follows that A is a semisimple ring. O

2 Structure of Algebras
Lemma 11 (Wedderburn). If A is a finite dimensional semisimple F-algebra then
A= Mn1 X1y (Dl) D---D Mn,.xn,. (Dr)

where D; are division algebras over F.
Any algebra of the above form is semisimple and the expression is unique up to reordering. Moreover,
the semisimple modules over A are D' where the action is given by matriz multiplication.

Proof. Write A = N{"' @ --- @ N;» with N; pairwise nonisomorphic simple modules. Then End4(A
SEnda(N") = &My, xn,(D;) where D; = Enda(N;) is a division algebra. Have a natural map A°P
End(A) given by a — (b~ ba) and so

'

A= @meni(D?p)
O

Remark 12. The above lemma shows that A is simple if and only if A = M, (D) where D is a division
algebra.

Corollary 13. If A is a semisimple F-algebra and M and N are finite dimensional A modules then M = N
if and only if Tra|yipg = Tralpiy for alli > 0 and a € A. If F has characteristic 0 then it is enough to
check Tra|pr = Traly for all a.

Proof. Let M = @P] and N = @Pf i where the P; are nonisomorphic simple A-modules. Clearly M = N if
and only if s; = ¢; for all 4, if and only if dime; M = dime; N for i = 1,...,r where e; is the projector onto
P;: e? =e€;, e, =1on P and e; =0 on P; # P;. Then Tre;|pipn = (d‘mjeiM) for all j and the condition on

traces becomes (* di;n Py = (" di;“ ) for all j.

If F has characteristic 0 then Tre;|ps = s;dim P; and Tre;|y = t; dim P; so if Tre;|pr = Tre;|y then
s; = t; for all i. If F has positive characteristic then the condition on traces implies that (1 4 x)% dim P =
(1 + x)t 4™ P which implies that s; = t; for a variable z. O

Definition 14. The F-algebra A is said to be a central simple algebra if it is a simple finite dimensional
algebra such that F = Z(A).

Lemma 15 (Jacobson density theorem). Let A be a finite dimensional F-algebra and let M be a simple
A-module. Let D = Endu(M) (a division algebra by Schur’s lemma). Let my,...,m, € M be linearly
independent over D and let nq,...,n,. € M. Then there exists a € A such that am; = n; for all i. (In other
words, “A is close to Endp(M)”.)



Proof. Let M = Dm1 @ Dmo @ --- @ Dm, @ N over D. (This can be done because D is a division algebra,
and so it is simple and so M is semisimple as a D-algebra.) Therefore there exists f € Endp (M) such that
f(m;) = n; by linear independence of m;.

Over A we have M™ = A(mq,...,m,) ® P and Ends(M") = M,«,(D) so there exists h € M,x,(D)
which is projection to A(my,...,m,). Then

f@&-eflm,...,m) = (n1,...,ny)
f@@f(h(mla7m7‘)>:h<f@@))(m177m7“)
=h(n,...,n.)
so h(ny,...,n,) € A(mq,...,m,) and the conclusion follows. O

Lemma 16. Let A be a central simple K-algebra. Then A @ AP = Endg(A) 2 M, xn(K) where n =
dimK A.

Proof. A®y AP acts on A with a left ® right action so get A® A°° — Endg(A). Let f € Endg A and let
ai,...,a, be a basis of A as a K-vector space. Apply the Jacobson density theorem to the A ®@x A°P-module
A. We may do this because A is a simple A ® g A°P-module. We get that there exists ¢ € A ® ¢ A°P such
that ca; = f(a;) for all . Therefore ¢ maps to f so A®@p A°? —» Endg(A). A dimension comparison shows
that this linear map is an isomorphism. [

Corollary 17. If A is a central simple K-algebra and B is any simple K-algebra then A @k B is a simple
K-algebra.

Proof. Let ai,...,a, be a basis of A/K. Fori =1,...,n find ¢; € A @k AP with ¢;(a;) = d;;. Let I
be a two-sided ideal of A ®x B. If > a; ®b; € I then ) ¢;i(a;) ®b; € I so 1®b;, € INK ®x B, where
IN K ® B is a two-sided ideal of B. Since B is simple, either I N K ® B = 0, in which case b; =0so [ =0,
or INK®B=K®BinwhichcaseleIsol=AQ B. O

Corollary 18. Let A and B be central simple K-algebras. Then A @k B is also central simple.

Proof. That A® B is simple follows from the previous corollary. Let a; be a basis of A/K and let > a; ®b; €
Z(A®k B). For any b € B we have (1®b)(>_a;®b;)— (> a;®b;)(1®b) = > a; ® (bb; — b;b) = 0. Therefore
bb; = b;b for all b so b; € Z(B) = K. Thus Zai ®b; € Z(A@K K) = Z(A) =K. ]

3 The Brauer Group

Definition 19. Two central simple K-algebras A and B are equivalent if there exists a division algebra D
and two nonnegative integers v and s such that A = M, (D) and B = Msys(D). Let Br(K) be the set of
central simple K-algebras up to equivalence.

Lemma 20. The set Br(K) becomes an abelian group under Q.

Proof. The identity element is [K] and the inverse of A is A°P: [A][A°P] = [A @k A°P] = [Mxn(K)]
(K.

o

Definition 21. For L/K a field extension there is a natural map Br(K) — Br(L) given by [A] — [A®k L].
Let Br(L/K) = ker(Br(K) — Br(L)).

Lemma 22 (Double centralizer theorem). Let A be a central simple K-algebra and let B C A be o K-
subalgebra. Let C4(B) = {c € A|cb = bc,Vb € B} be the centralizer of B in A. Thenl

1. C4(B) is simple.



3. Ca(Ca(B)) = B.

Proof. Since B C A it follows there exists n and a division algebra D such that B @ A°P = M, xn(D)
([B][A°P] = [K]). Therefore there exists an integer r such that A = (D™)" as a M, x,(D) = B @k AP
module. Note that C4(B) = Endpg, aer(A4) (A =2 Endag, aer(A)). But Endgg, ace(A) = My, (DP)
which implies that C4(B) is simple, as matrix algebras are simple.

Also, dimg Ca(B) = r?dimg D = r2dimg D and dimg Bdimg A = dimg (B ®x A°P) = n?dimg D.
Therefore dimgx A = rndimg D which implies the second part.

Finally, B C C'4(C4(B)) and a dimension comparison implies isomorphism. O

Corollary 23. Let D/K be a division algebra. Then dimg D is a square number and any maximal subfield

of D has dimension /dimg D.

Proof. Let L C D be a maximal subfield. Then Cp(L) C L. If L # Cp(L) choose z € Cp(L) — L in
which case L(x) is a commutative division algebra, so a field, which contradicts the choice of L. Therefore
L = Cp(L) and the previous lemma implies that (dimg L)? = dimg D. O

Corollary 24. Let A be a central simple K-algebra and let L be a mazximal subfield of A. Then A @y L =
My xn(L) for some n, i.e., [A] € Br(L/K).

Proof. Let L C C4(L) = M,x,(D) for some division algebra D. Then L C Z(C4(L)) = Dso L C D. Again,
by maximality of L we deduce that L = D so C4(L) = M, (L), but this implies (as in the proof of the
double centralizer theorem) that L ® g A°P = M,y (L). O



