Basics of Representation Theory

1 Basics

Definition 1. - Let F be a field. A noncommutative ring A is said to be a finite dimensional F-algebra if $\operatorname{dim}_{F} A<\infty$ and it is equipped with a ring homomorphism $F \rightarrow Z(A)$ taking 1 to 1 .

- By a finite dimensional module M over A we mean a finite dimensional left A-module.
- The algebra A is said to be simple if its only two-sided ideals are 0 and A.
- A is said to be a division algebra if $A-\{0\}$ is a group under multiplication in the algebra.
- A finite dimensional A-module M is simple if its only A-submodules are 0 and M.

Definition 2. If $(A,+, \times)$ is an F-algebra define the opposite F-algebra $\left(A,+, \times{ }^{\mathrm{op}}\right)$ where the set is A, the addition + is the same as in A but multiplication is $a \times{ }^{\mathrm{op}} b=b \times a$.

Lemma 3 (Schur). 1. If M and N are simple A-modules and $f \in \operatorname{Hom}_{A}(M, N)$ then either $f=0$ or f is an isomorphism.
2. If M is simple then $\operatorname{End}_{A}(M)$ is a division algebra.

Proof. Note that $\operatorname{ker} f \subset M$ and $\operatorname{Im} f \subset N$ so either $\operatorname{ker} f=0$ or $\operatorname{ker} f=M$ and either $\operatorname{Im} f=0$ or $\operatorname{Im} f=N$.

Lemma 4. Let M be a finite-dimensional A-module. The following are equivalent:

1. $M=N_{1} \oplus \cdots N_{r}$ where N_{i} are simple.
2. $M=\sum N_{i}$ with simple $N_{i} \subset M$.
3. If $N \subset M$ then there exists $P \subset M$ such that $M=N \oplus P$.
4. If $N \subset M^{\prime} \subset M$ there exists $P \subset M^{\prime}$ such that $M^{\prime}=N \oplus P$.

Proof. 1 implies 2 is vacuous.
2 implies 3: choose a maximal set of simple submodules $Q_{1}, \ldots, Q_{r} \subset M$ such that $N+Q_{1}+\cdots+Q_{r}=$ $N \oplus Q_{1} \oplus \cdots \oplus Q_{r}$. If $N \oplus Q_{1} \oplus \cdots \oplus Q_{r} \neq M$ choose a simple $Q_{r+1} \subset M$ such that $Q_{r+1} \not \subset N \oplus Q_{1} \oplus \cdots \oplus Q_{r}$. Since Q_{r+1} is simple it follows that $N \oplus Q_{1} \oplus \cdots \oplus Q_{r} \cap Q_{r+1}=0$ so $N+Q_{1}+\cdots+Q_{r+1}=N \oplus Q_{1} \oplus \cdots \oplus Q_{r+1}$ contradicting the maximality of r.

3 implies 4: If $M=N \oplus Q$ then $M^{\prime}=N \oplus\left(Q \cap M^{\prime}\right)$.
4 implies 1: choose $N \subset M$ a simple submodule. Then $M=N \oplus P$ and inductively we get the required decomposition.

Definition 5. When the equivalent conditions of the previous lemma hold the module M is said to be semisimple.

Note 6. It is left as an exercise that a semisimple module decomposes uniquely (up to reordering) as a direct sum of simple submodules.

Corollary 7. Semisimplicity is preserved under direct sums and passage to quotients and submodules.
Corollary 8. If A is a semisimple A-module then all finite dimensional A-modules are semisimple. In that case A is said to be a (left) semisimple ring.

Proof. If M is any finite dimensional A-module then $A^{r}>M$ for some r and M must be semisimple.
Corollary 9. Let M be a finite dimensional A module such that the action of A on M is faithful, i.e., if for $a \in A$ we have am=0 for all $m \in M$ then $a=0$. If M is semisimple then A is semisimple.

Corollary 10. if A is simple as a ring, i.e., there are no nontrivial two-sided ideals, then it is left semisimple.
Proof. Let $M \subset A$ a simple left A-submodule. Then $\sum_{a \in A} M a \subset A$ is a two-sided ideal so $\sum_{a \in A} M a=A$. Since A is then a semisimple A-module it follows that A is a semisimple ring.

2 Structure of Algebras

Lemma 11 (Wedderburn). If A is a finite dimensional semisimple F-algebra then

$$
A \cong M_{n_{1} \times n_{1}}\left(D_{1}\right) \oplus \cdots \oplus M_{n_{r} \times n_{r}}\left(D_{r}\right)
$$

where D_{i} are division algebras over F.
Any algebra of the above form is semisimple and the expression is unique up to reordering. Moreover, the semisimple modules over A are $D_{i}^{n_{i}}$ where the action is given by matrix multiplication.

Proof. Write $A=N_{1}^{n_{1}} \oplus \cdots \oplus N_{r}^{n_{r}}$ with N_{i} pairwise nonisomorphic simple modules. Then $\operatorname{End}_{A}(A)=$ $\oplus \operatorname{End}_{A}\left(N_{i}^{n_{i}}\right)=\oplus M_{n_{i} \times n_{i}}\left(D_{i}\right)$ where $D_{i}=\operatorname{End}_{A}\left(N_{i}\right)$ is a division algebra. Have a natural map $A^{\text {op }} \cong$ $\operatorname{End}_{A}(A)$ given by $a \mapsto(b \mapsto b a)$ and so

$$
A \cong \oplus M_{n_{i} \times n_{i}}\left(D_{i}^{\mathrm{op}}\right)
$$

Remark 12. The above lemma shows that A is simple if and only if $A=M_{n}(D)$ where D is a division algebra.

Corollary 13. If A is a semisimple F-algebra and M and N are finite dimensional A modules then $M \cong N$ if and only if $\left.\operatorname{Tr} a\right|_{\wedge^{i} M}=\left.\operatorname{Tr} a\right|_{\wedge^{i} N}$ for all $i \geq 0$ and $a \in A$. If F has characteristic 0 then it is enough to check $\left.\operatorname{Tr} a\right|_{M}=\left.\operatorname{Tr} a\right|_{N}$ for all a.

Proof. Let $M \cong \oplus P_{i}^{s_{i}}$ and $N \cong \oplus P_{i}^{t_{i}}$ where the P_{i} are nonisomorphic simple A-modules. Clearly $M \cong N$ if and only if $s_{i}=t_{i}$ for all i, if and only if $\operatorname{dim} e_{i} M=\operatorname{dim} e_{i} N$ for $i=1, \ldots, r$ where e_{i} is the projector onto $P_{i}: e_{i}^{2}=e_{i}, e_{i}=1$ on P_{i} and $e_{i}=0$ on $P_{j} \neq P_{i}$. Then $\left.\operatorname{Tr} e_{i}\right|_{\wedge^{j} M}=\left(\underset{j}{\operatorname{dim} e_{i} M}\right)$ for all j and the condition on traces becomes $\left(\begin{array}{c}s_{i} \\ \operatorname{dim} P_{i} \\ j\end{array}\right)=\left(t_{i} \operatorname{dim}_{j} P_{i}\right)$ for all j.

If F has characteristic 0 then $\left.\operatorname{Tr} e_{i}\right|_{M}=s_{i} \operatorname{dim} P_{i}$ and $\left.\operatorname{Tr} e_{i}\right|_{N}=t_{i} \operatorname{dim} P_{i}$ so if $\left.\operatorname{Tr} e_{i}\right|_{M}=\left.\operatorname{Tr} e_{i}\right|_{N}$ then $s_{i}=t_{i}$ for all i. If F has positive characteristic then the condition on traces implies that $(1+x)^{s_{i} \operatorname{dim} P_{i}}=$ $(1+x)^{t_{i} \operatorname{dim} P_{i}}$ which implies that $s_{i}=t_{i}$ for a variable x.

Definition 14. The F-algebra A is said to be a central simple algebra if it is a simple finite dimensional algebra such that $F \cong Z(A)$.

Lemma 15 (Jacobson density theorem). Let A be a finite dimensional F-algebra and let M be a simple A-module. Let $D=\operatorname{End}_{A}(M)$ (a division algebra by Schur's lemma). Let $m_{1}, \ldots, m_{r} \in M$ be linearly independent over D and let $n_{1}, \ldots, n_{r} \in M$. Then there exists $a \in A$ such that ami $=n_{i}$ for all i. (In other words, " A is close to $\operatorname{End}_{D}(M)$ ".)

Proof. Let $M=D m_{1} \oplus D m_{2} \oplus \cdots \oplus D m_{r} \oplus N$ over D. (This can be done because D is a division algebra, and so it is simple and so M is semisimple as a D-algebra.) Therefore there exists $f \in \operatorname{End}_{D}(M)$ such that $f\left(m_{i}\right)=n_{i}$ by linear independence of m_{i}.

Over A we have $M^{r}=A\left(m_{1}, \ldots, m_{r}\right) \oplus P$ and $\operatorname{End}_{A}\left(M^{r}\right)=M_{r \times r}(D)$ so there exists $h \in M_{r \times r}(D)$ which is projection to $A\left(m_{1}, \ldots, m_{r}\right)$. Then

$$
\begin{aligned}
f \oplus \cdots \oplus f\left(m_{1}, \ldots, m_{r}\right) & =\left(n_{1}, \ldots, n_{r}\right) \\
f \oplus \cdots \oplus f\left(h\left(m_{1}, \ldots, m_{r}\right)\right) & =h(f \oplus \cdots \oplus))\left(m_{1}, \ldots, m_{r}\right) \\
& =h\left(n_{1}, \ldots, n_{r}\right)
\end{aligned}
$$

so $h\left(n_{1}, \ldots, n_{r}\right) \in A\left(m_{1}, \ldots, m_{r}\right)$ and the conclusion follows.
Lemma 16. Let A be a central simple K-algebra. Then $A \otimes_{K} A^{\mathrm{op}} \cong \operatorname{End}_{K}(A) \cong M_{n \times n}(K)$ where $n=$ $\operatorname{dim}_{K} A$.

Proof. $A \otimes_{K} A^{\mathrm{op}}$ acts on A with a left \otimes right action so get $A \otimes_{K} A^{\mathrm{op}} \rightarrow \operatorname{End}_{K}(A)$. Let $f \in \operatorname{End}_{K} A$ and let a_{1}, \ldots, a_{n} be a basis of A as a K-vector space. Apply the Jacobson density theorem to the $A \otimes_{K} A^{\text {op }}$-module A. We may do this because A is a simple $A \otimes_{K} A^{\mathrm{op}}$-module. We get that there exists $c \in A \otimes_{K} A^{\mathrm{op}}$ such that $c a_{i}=f\left(a_{i}\right)$ for all i. Therefore c maps to f so $A \otimes_{K} A^{\mathrm{op}} \rightarrow \operatorname{End}_{K}(A)$. A dimension comparison shows that this linear map is an isomorphism.

Corollary 17. If A is a central simple K-algebra and B is any simple K-algebra then $A \otimes_{K} B$ is a simple K-algebra.

Proof. Let a_{1}, \ldots, a_{n} be a basis of A / K. For $i=1, \ldots, n$ find $c_{i} \in A \otimes_{K} A^{\mathrm{op}}$ with $c_{i}\left(a_{j}\right)=\delta_{i j}$. Let I be a two-sided ideal of $A \otimes_{K} B$. If $\sum a_{j} \otimes b_{j} \in I$ then $\sum c_{i}\left(a_{j}\right) \otimes b_{j} \in I$ so $1 \otimes b_{i} \in I \cap K \otimes_{K} B$, where $I \cap K \otimes B$ is a two-sided ideal of B. Since B is simple, either $I \cap K \otimes B=0$, in which case $b_{i}=0$ so $I=0$, or $I \cap K \otimes B=K \otimes B$ in which case $1 \in I$ so $I=A \otimes B$.

Corollary 18. Let A and B be central simple K-algebras. Then $A \otimes_{K} B$ is also central simple.
Proof. That $A \otimes B$ is simple follows from the previous corollary. Let a_{i} be a basis of A / K and let $\sum a_{i} \otimes b_{i} \in$ $Z\left(A \otimes_{K} B\right)$. For any $b \in B$ we have $(1 \otimes b)\left(\sum a_{i} \otimes b_{i}\right)-\left(\sum a_{i} \otimes b_{i}\right)(1 \otimes b)=\sum a_{i} \otimes\left(b b_{i}-b_{i} b\right)=0$. Therefore $b b_{i}=b_{i} b$ for all b so $b_{i} \in Z(B)=K$. Thus $\sum a_{i} \otimes b_{i} \in Z\left(A \otimes_{K} K\right)=Z(A)=K$.

3 The Brauer Group

Definition 19. Two central simple K-algebras A and B are equivalent if there exists a division algebra D and two nonnegative integers r and s such that $A \cong M_{r \times r}(D)$ and $B \cong M_{s \times s}(D)$. Let $\operatorname{Br}(K)$ be the set of central simple K-algebras up to equivalence.

Lemma 20. The set $\operatorname{Br}(K)$ becomes an abelian group under \otimes_{K}.
Proof. The identity element is $[K]$ and the inverse of A is $A^{\mathrm{op}}:[A]\left[A^{\mathrm{op}}\right]=\left[A \otimes_{K} A^{\mathrm{op}}\right]=\left[M_{n \times n}(K)\right]=$ [K].

Definition 21. For L / K a field extension there is a natural map $\operatorname{Br}(K) \rightarrow \operatorname{Br}(L)$ given by $[A] \mapsto\left[A \otimes_{K} L\right]$. Let $\operatorname{Br}(L / K)=\operatorname{ker}(\operatorname{Br}(K) \rightarrow \operatorname{Br}(L))$.

Lemma 22 (Double centralizer theorem). Let A be a central simple K-algebra and let $B \subset A$ be a K subalgebra. Let $C_{A}(B)=\{c \in A \mid c b=b c, \forall b \in B\}$ be the centralizer of B in A. Then 1

1. $C_{A}(B)$ is simple.
2. $\operatorname{dim}_{K} C_{A}(B) \operatorname{dim}_{K} B=\operatorname{dim}_{K} A$.

$$
\text { 3. } C_{A}\left(C_{A}(B)\right)=B \text {. }
$$

Proof. Since $B \subset A$ it follows there exists n and a division algebra D such that $B \otimes_{K} A^{\text {op }}=M_{n \times n}(D)$ $\left([B]\left[A^{\text {op }}\right]=[K]\right)$. Therefore there exists an integer r such that $A \cong\left(D^{n}\right)^{r}$ as a $M_{n \times n}(D)=B \otimes_{K} A^{\text {op }}$ module. Note that $C_{A}(B)=\operatorname{End}_{B \otimes_{K} A^{\text {op }}}(A)\left(A \cong \operatorname{End}_{A \otimes_{K} A^{\text {op }}}(A)\right)$. But $\operatorname{End}_{B \otimes_{K} A^{\text {op }}}(A)=M_{r \times r}\left(D^{\text {op }}\right)$ which implies that $C_{A}(B)$ is simple, as matrix algebras are simple.

Also, $\operatorname{dim}_{K} C_{A}(B)=r^{2} \operatorname{dim}_{K} D^{\mathrm{op}}=r^{2} \operatorname{dim}_{K} D$ and $\operatorname{dim}_{K} B \operatorname{dim}_{K} A=\operatorname{dim}_{K}\left(B \otimes_{K} A^{\mathrm{op}}\right)=n^{2} \operatorname{dim}_{K} D$. Therefore $\operatorname{dim}_{K} A=r n \operatorname{dim}_{K} D$ which implies the second part.

Finally, $B \subset C_{A}\left(C_{A}(B)\right)$ and a dimension comparison implies isomorphism.
Corollary 23. Let D / K be a division algebra. Then $\operatorname{dim}_{K} D$ is a square number and any maximal subfield of D has dimension $\sqrt{\operatorname{dim}_{K} D}$.

Proof. Let $L \subset D$ be a maximal subfield. Then $C_{D}(L) \subset L$. If $L \neq C_{D}(L)$ choose $x \in C_{D}(L)-L$ in which case $L(x)$ is a commutative division algebra, so a field, which contradicts the choice of L. Therefore $L=C_{D}(L)$ and the previous lemma implies that $\left(\operatorname{dim}_{K} L\right)^{2}=\operatorname{dim}_{K} D$.
Corollary 24. Let A be a central simple K-algebra and let L be a maximal subfield of A. Then $A \otimes_{K} L \cong$ $M_{n \times n}(L)$ for some n, i.e., $[A] \in \operatorname{Br}(L / K)$.

Proof. Let $L \subset C_{A}(L) \cong M_{r \times r}(D)$ for some division algebra D. Then $L \subset Z\left(C_{A}(L)\right)=D$ so $L \subset D$. Again, by maximality of L we deduce that $L=D$ so $C_{A}(L) \cong M_{r \times r}(L)$, but this implies (as in the proof of the double centralizer theorem) that $L \otimes_{K} A^{\mathrm{op}} \cong M_{n \times n}(L)$.

