
Basics of Representation Theory

1 Basics

Definition 1. • Let F be a field. A noncommutative ring A is said to be a finite dimensional F -algebra
if dimF A < ∞ and it is equipped with a ring homomorphism F → Z(A) taking 1 to 1.

• By a finite dimensional module M over A we mean a finite dimensional left A-module.

• The algebra A is said to be simple if its only two-sided ideals are 0 and A.

• A is said to be a division algebra if A− {0} is a group under multiplication in the algebra.

• A finite dimensional A-module M is simple if its only A-submodules are 0 and M .

Definition 2. If (A,+,×) is an F -algebra define the opposite F -algebra (A,+,×op) where the set is A, the
addition + is the same as in A but multiplication is a×op b = b× a.

Lemma 3 (Schur). 1. If M and N are simple A-modules and f ∈ HomA(M,N) then either f = 0 or f
is an isomorphism.

2. If M is simple then EndA(M) is a division algebra.

Proof. Note that ker f ⊂ M and Im f ⊂ N so either ker f = 0 or ker f = M and either Im f = 0 or
Im f = N .

Lemma 4. Let M be a finite-dimensional A-module. The following are equivalent:

1. M = N1 ⊕ · · ·Nr where Ni are simple.

2. M =
∑

Ni with simple Ni ⊂ M .

3. If N ⊂ M then there exists P ⊂ M such that M = N ⊕ P .

4. If N ⊂ M ′ ⊂ M there exists P ⊂ M ′ such that M ′ = N ⊕ P .

Proof. 1 implies 2 is vacuous.
2 implies 3: choose a maximal set of simple submodules Q1, . . . , Qr ⊂ M such that N +Q1 + · · ·+Qr =

N⊕Q1⊕· · ·⊕Qr. If N⊕Q1⊕· · ·⊕Qr 6= M choose a simple Qr+1 ⊂ M such that Qr+1 6⊂ N⊕Q1⊕· · ·⊕Qr.
Since Qr+1 is simple it follows that N⊕Q1⊕· · ·⊕Qr∩Qr+1 = 0 so N+Q1+· · ·+Qr+1 = N⊕Q1⊕· · ·⊕Qr+1

contradicting the maximality of r.
3 implies 4: If M = N ⊕Q then M ′ = N ⊕ (Q ∩M ′).
4 implies 1: choose N ⊂ M a simple submodule. Then M = N ⊕ P and inductively we get the required

decomposition.

Definition 5. When the equivalent conditions of the previous lemma hold the module M is said to be
semisimple.

Note 6. It is left as an exercise that a semisimple module decomposes uniquely (up to reordering) as a direct
sum of simple submodules.
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Corollary 7. Semisimplicity is preserved under direct sums and passage to quotients and submodules.

Corollary 8. If A is a semisimple A-module then all finite dimensional A-modules are semisimple. In that
case A is said to be a (left) semisimple ring.

Proof. If M is any finite dimensional A-module then Ar →→ M for some r and M must be semisimple.

Corollary 9. Let M be a finite dimensional A module such that the action of A on M is faithful, i.e., if
for a ∈ A we have am = 0 for all m ∈ M then a = 0. If M is semisimple then A is semisimple.

Corollary 10. if A is simple as a ring, i.e., there are no nontrivial two-sided ideals, then it is left semisimple.

Proof. Let M ⊂ A a simple left A-submodule. Then
∑
a∈A

Ma ⊂ A is a two-sided ideal so
∑
a∈A

Ma = A. Since

A is then a semisimple A-module it follows that A is a semisimple ring.

2 Structure of Algebras

Lemma 11 (Wedderburn). If A is a finite dimensional semisimple F -algebra then

A ∼= Mn1×n1(D1)⊕ · · · ⊕Mnr×nr (Dr)

where Di are division algebras over F .
Any algebra of the above form is semisimple and the expression is unique up to reordering. Moreover,

the semisimple modules over A are Dni
i where the action is given by matrix multiplication.

Proof. Write A = Nn1
1 ⊕ · · · ⊕ Nnr

r with Ni pairwise nonisomorphic simple modules. Then EndA(A) =
⊕EndA(N

ni
i ) = ⊕Mni×ni(Di) where Di = EndA(Ni) is a division algebra. Have a natural map Aop ∼=

EndA(A) given by a 7→ (b 7→ ba) and so

A ∼= ⊕Mni×ni(D
op
i )

Remark 12. The above lemma shows that A is simple if and only if A = Mn(D) where D is a division
algebra.

Corollary 13. If A is a semisimple F -algebra and M and N are finite dimensional A modules then M ∼= N
if and only if Tr a|∧iM = Tr a|∧iN for all i ≥ 0 and a ∈ A. If F has characteristic 0 then it is enough to
check Tr a|M = Tr a|N for all a.

Proof. Let M ∼= ⊕P si
i and N ∼= ⊕P ti

i where the Pi are nonisomorphic simple A-modules. Clearly M ∼= N if
and only if si = ti for all i, if and only if dim eiM = dim eiN for i = 1, . . . , r where ei is the projector onto
Pi: e

2
i = ei, ei = 1 on Pi and ei = 0 on Pj 6= Pi. Then Tr ei|∧jM =

(
dim eiM

j

)
for all j and the condition on

traces becomes
(
si dimPi

j

)
=

(
ti dimPi

j

)
for all j.

If F has characteristic 0 then Tr ei|M = si dimPi and Tr ei|N = ti dimPi so if Tr ei|M = Tr ei|N then
si = ti for all i. If F has positive characteristic then the condition on traces implies that (1 + x)si dimPi =
(1 + x)ti dimPi which implies that si = ti for a variable x.

Definition 14. The F -algebra A is said to be a central simple algebra if it is a simple finite dimensional
algebra such that F ∼= Z(A).

Lemma 15 (Jacobson density theorem). Let A be a finite dimensional F -algebra and let M be a simple
A-module. Let D = EndA(M) (a division algebra by Schur’s lemma). Let m1, . . . ,mr ∈ M be linearly
independent over D and let n1, . . . , nr ∈ M . Then there exists a ∈ A such that ami = ni for all i. (In other
words, “A is close to EndD(M)”.)
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Proof. Let M = Dm1 ⊕Dm2 ⊕ · · · ⊕Dmr ⊕N over D. (This can be done because D is a division algebra,
and so it is simple and so M is semisimple as a D-algebra.) Therefore there exists f ∈ EndD(M) such that
f(mi) = ni by linear independence of mi.

Over A we have Mr = A(m1, . . . ,mr) ⊕ P and EndA(M
r) = Mr×r(D) so there exists h ∈ Mr×r(D)

which is projection to A(m1, . . . ,mr). Then

f ⊕ · · · ⊕ f(m1, . . . ,mr) = (n1, . . . , nr)

f ⊕ · · · ⊕ f(h(m1, . . . ,mr)) = h(f ⊕ · · ·⊕))(m1, . . . ,mr)

= h(n1, . . . , nr)

so h(n1, . . . , nr) ∈ A(m1, . . . ,mr) and the conclusion follows.

Lemma 16. Let A be a central simple K-algebra. Then A ⊗K Aop ∼= EndK(A) ∼= Mn×n(K) where n =
dimK A.

Proof. A⊗K Aop acts on A with a left ⊗ right action so get A⊗K Aop → EndK(A). Let f ∈ EndK A and let
a1, . . . , an be a basis of A as a K-vector space. Apply the Jacobson density theorem to the A⊗K Aop-module
A. We may do this because A is a simple A ⊗K Aop-module. We get that there exists c ∈ A ⊗K Aop such
that cai = f(ai) for all i. Therefore c maps to f so A⊗K Aop →→ EndK(A). A dimension comparison shows
that this linear map is an isomorphism.

Corollary 17. If A is a central simple K-algebra and B is any simple K-algebra then A⊗K B is a simple
K-algebra.

Proof. Let a1, . . . , an be a basis of A/K. For i = 1, . . . , n find ci ∈ A ⊗K Aop with ci(aj) = δij . Let I
be a two-sided ideal of A ⊗K B. If

∑
aj ⊗ bj ∈ I then

∑
ci(aj) ⊗ bj ∈ I so 1 ⊗ bi ∈ I ∩ K ⊗K B, where

I ∩K ⊗B is a two-sided ideal of B. Since B is simple, either I ∩K ⊗B = 0, in which case bi = 0 so I = 0,
or I ∩K ⊗B = K ⊗B in which case 1 ∈ I so I = A⊗B.

Corollary 18. Let A and B be central simple K-algebras. Then A⊗K B is also central simple.

Proof. That A⊗B is simple follows from the previous corollary. Let ai be a basis of A/K and let
∑

ai⊗bi ∈
Z(A⊗K B). For any b ∈ B we have (1⊗ b)(

∑
ai⊗ bi)− (

∑
ai⊗ bi)(1⊗ b) =

∑
ai⊗ (bbi− bib) = 0. Therefore

bbi = bib for all b so bi ∈ Z(B) = K. Thus
∑

ai ⊗ bi ∈ Z(A⊗K K) = Z(A) = K.

3 The Brauer Group

Definition 19. Two central simple K-algebras A and B are equivalent if there exists a division algebra D
and two nonnegative integers r and s such that A ∼= Mr×r(D) and B ∼= Ms×s(D). Let Br(K) be the set of
central simple K-algebras up to equivalence.

Lemma 20. The set Br(K) becomes an abelian group under ⊗K .

Proof. The identity element is [K] and the inverse of A is Aop: [A][Aop] = [A ⊗K Aop] = [Mn×n(K)] =
[K].

Definition 21. For L/K a field extension there is a natural map Br(K) → Br(L) given by [A] 7→ [A⊗K L].
Let Br(L/K) = ker(Br(K) → Br(L)).

Lemma 22 (Double centralizer theorem). Let A be a central simple K-algebra and let B ⊂ A be a K-
subalgebra. Let CA(B) = {c ∈ A|cb = bc,∀b ∈ B} be the centralizer of B in A. Then1

1. CA(B) is simple.

2. dimK CA(B) dimK B = dimK A.
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3. CA(CA(B)) = B.

Proof. Since B ⊂ A it follows there exists n and a division algebra D such that B ⊗K Aop = Mn×n(D)
([B][Aop] = [K]). Therefore there exists an integer r such that A ∼= (Dn)r as a Mn×n(D) = B ⊗K Aop

module. Note that CA(B) = EndB⊗KAop(A) (A ∼= EndA⊗KAop(A)). But EndB⊗KAop(A) = Mr×r(D
op)

which implies that CA(B) is simple, as matrix algebras are simple.
Also, dimK CA(B) = r2 dimK Dop = r2 dimK D and dimK B dimK A = dimK(B ⊗K Aop) = n2 dimK D.

Therefore dimK A = rn dimK D which implies the second part.
Finally, B ⊂ CA(CA(B)) and a dimension comparison implies isomorphism.

Corollary 23. Let D/K be a division algebra. Then dimK D is a square number and any maximal subfield
of D has dimension

√
dimK D.

Proof. Let L ⊂ D be a maximal subfield. Then CD(L) ⊂ L. If L 6= CD(L) choose x ∈ CD(L) − L in
which case L(x) is a commutative division algebra, so a field, which contradicts the choice of L. Therefore
L = CD(L) and the previous lemma implies that (dimK L)2 = dimK D.

Corollary 24. Let A be a central simple K-algebra and let L be a maximal subfield of A. Then A⊗K L ∼=
Mn×n(L) for some n, i.e., [A] ∈ Br(L/K).

Proof. Let L ⊂ CA(L) ∼= Mr×r(D) for some division algebra D. Then L ⊂ Z(CA(L)) = D so L ⊂ D. Again,
by maximality of L we deduce that L = D so CA(L) ∼= Mr×r(L), but this implies (as in the proof of the
double centralizer theorem) that L⊗K Aop ∼= Mn×n(L).
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