
Basics of Homological Algebra

1 Definitions

Definition 1. A category A is said to be abelian if for any objects M and N , Hom(M,N) is an abelian
group, kernels and cokernels exist in the category and if finite direct sums exist in the category.

Example 2. The categories of sets, the category Ab-Gr of abelian groups and the category ModR of modules
over a fixed ring R are all abelian categories.

Definition 3. Let A be an abelian category. A sequence K• = · · · → Mi−1
di−1→ Mi

di→ Mi+1 → · · · is said
to be a complex if di ◦ di−1 = 0 for all i. The complex K• is said to be exact at Mi if Im di−1 = ker di; the
complex is said to be exact if it is exact at all i. The cohomology of K• is Hi(K•) = ker di/ Im di−1; the
cohomology groups fit into a complex H•(K•) = · · · → Hi−1(K•) → Hi(K•) → · · · .

Remark 4. The complex 0 → M → N is exact at M if the map M → N is injective. The complex
M → N → 0 is exact at N if M → N is surjective.

Definition 5. A covariant functor F : A → B between two abelian categories is said to be left-exact if for
all exact sequences 0 → M → N → P → 0 in A one gets an exact sequence 0 → F (M) → F (N) → F (P ) in
B.

Example 6. Let G be a profinite group and let Z[G] be the ring generated linearly over Z by elements of
G, with multiplication extended by linearity from multiplication in the group G. Let ModG be the category
of continuous Z[G]-modules, where a Z[G]-module M is said to be continuous if for all m ∈ M the stabilizer
StabG(m) = {g ∈ G|gm = m} is an open subgroup of G. Then ModG is an abelian category and the functor
F : ModG → Ab-Gr given by F (M) = MG = {m ∈ M |gm = m, ∀g ∈ G} is left-exact.

Definition 7. Let A and B be two categories and let F,G : A → B be two functors. A natural transformation
f : F → G is the datum, for each object M in A of a morphism fM : F (M) → G(M) such that if M → N
is a morphism then we get a commutative diagram

F (M)
fM //

��

G(M)

��
F (N)

fN // G(N)

Definition 8. Let A be an abelian category. An object I of A is said to be injective if for all morphisms f
and all injective morphisms g there exists a morphism h making the diagram commutative

M
f //� _

g

��

I

N

h

??~
~

~
~
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An object P of A is said to be projective if for all morphisms f and all surjective morphisms g there
exists a morphism h making the diagram commutative

N

g
����

P

h

>>}
}

}
}

f
// M

A category A is said to have “enough injectives” if for every object M of A there exists an injective object
I of A and an injection A ↪→ I. The category A has “enough projectives” if for every object M of A there
exists a projective object P of A and a surjection P →→ M .

Example 9. In the category ModZ of abelian groups (or equivalently of modules over Z) the object Z is not
injective because while Z injects into Q there is no morphism Q → Z. However, the object Q/Z is injective.

Lemma 10. Let A be a category with enough injectives. Then every object M of A has an injective resolution,
i.e., there exists an exact sequence

0 → M → I0 → I1 → . . .

where In are injectives. We write such a resolution as 0 → M → I•.

Proof. Assume we inductively have an exact sequence

0 → M → I0 → . . . → Ik

where Ik are injective. For k = 1 this follows from the fact that the category has enough injectives. Consider
an injection Ik/ Im Ik−1 into some injective object Ik+1. Then

0 → M → I0 → . . . → Ik → Ik+1

will be exact. In the limit we get the desired injective resolution.

Lemma 11. Given two injective resolutions 0 → M → I•1 and 0 → M → I•2 we get an isomorphism of
complexes H•(I•1 )

∼= H•(I•2 ), in other words, for each i ≥ 0 we have H0(I•1 )
∼= H0(I•2 ).

Proof. One can show that there exist maps of complexes α : I•1 → I•2 and β : I•2 → I•1 such that α ◦ β and
β ◦ α are homotopic to the identity. Recall that a map of complexes f : K• → K• is homotopic to 0 (f and
g are homotopic if f − g is homotopic to 0) if it induces the 0 map on cohomology. For details, see Eisenbud
Commutative algebra with a view towards algebraic geometry Appendix A.3.

Proposition 12. Let F : A → B be a covariant left-exact functor between two abelian categories with A
having enough injectives. Then there exist covariant functors RiF : A → B called the right derived functors
of F such that for all exact sequences 0 → M → N → P → 0 we get an exact sequence

0 → F (M) → F (N) → F (P ) → R1F (M) → R1F (N) → R1F (P ) → R2F (M) → . . .

Proof. LetM be an object of A and let 0 → M → I• be an injective resolution. Define RiF (M) = Hi(F (I•))
where Hi is the i-th cohomology group of the complex I•. The previous lemma implies that this definition
is independent of the choice of injective resolution I•.

Example 13. Let G be a profinite group and let F : ModG → Ab-Gr given by F (M) = MH . The group
cohomology Hi(G,−) is the i-th right-derived functor of F .

Definition 14. Let F : A → B be a left-exact functor between two abelian categories. An object M of A is
said to be F -acyclic if RiF (M) = 0 for i > 0. In particular, if G is a profinite group an object M of ModG
is acyclic if Hi(G,M) = 0 for i > 0.

2



Note 15. If I is an injective module in ModG then I is acyclic.

Proof. An injective resolution for I is simply 0 → I → I → 0 and so 0 → IG → IG → 0 is still exact. Thus
Hi(G, I) = 0 for i > 0.

Lemma 16. Let M be a module in ModG and let 0 → M → J• be a resolution such that Jn is acyclic for
all n. Then Hi(G,M) = Hi(J•).

Proof. This is easy.

Definition 17. A covariant functor F : A → B between two abelian categories A and B is said to be
effaceable if for any object M of A there exists an injection M ↪→ N in A such that F (M) → F (N) is the 0
morphism.

Example 18. If G is a profinite group and F (M) = MG as before the Hi(G,−) = RiF is effaceable for
i > 0.

Proof. Let I be an injective object containing M . It is injective so acyclic and therefore Hi(G,M) →
Hi(G, I) = 0.

2 Covariant δ-functors

Definition 19. By a covariant δ-functor between two abelian categories A and B we mean a series of
covariant functors Hi : A → B with the property that for each exact sequence 0 → M → N → P → 0 in A
we get homomorphisms δi : H

i(P ) → Hi+1(M) such that

1. If 0 → M → N → P → 0 is exact then get an exact sequence

0 → H0(M) → H0(N) → H0(P )
δ0→ H1(M) → H1(N) → H1(P )

δ1→ H2(M) → · · ·

2. If
0 // M //

��

N //

��

P //

��

0

0 // M ′ // N ′ // P ′ // 0

are two exact sequences such that the diagram commutes then we get a commutative diagram

Hi(P )
δi //

��

Hi+1(M)

��
Hi(P ′)

δi // Hi+1(M ′)

A δ-functor is called universal if for any other δ-functor (H
i
, δi) and any natural transformation f :

H0 → H
0
there exist unique natural transformations f i : Hi → H

i
commuting with the δi-s.

Example 20. Let F be a left-exact covariant functor. Then the right derived functors RiF form a δ-functor.

Lemma 21. Let H = (Hi, δi) be a δ-functor such that Hi is effaceable for i > 0. Then H is a universal
δ-functor.

Corollary 22. If G is a profinite group then Hi(G,−), δi) is a universal δ-functor.
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3 Spectral sequences

Definition 23. A spectral sequence is a collection of objects Ep,q
i of an abelian category for i ≥ 1 and

p, q ∈ Z, together with morphisms dp,qi : Ep,q
i → Ep+i,q−i+1

i such that di ◦ di = 0, such that Ep,q
i+1 is the

cohomology group of the complex . . . → Ep−i,q+i−1
i → Ep,q

i → Ep+i,q−i+1
i → . . . at the position of Ep,q

i .

Definition 24. A spectral sequence Ep,q
i stabilizes if for large i we have Ep,q

i = Ep,q
∞ is independent of i.

Definition 25. A spectral sequence Ep,q
i abuts to Ep+q in which case we write Ep,q

i =⇒ Ep+q if it stabilizes

and if there exists a filtration Ep+q = Fil0 ⊃ Fil1 ⊃ . . . ⊃ Filk = 0 such that Ei,p+q−i
∞

∼= Fili /Fili+1.

Theorem 26 (Grothendieck spectral sequence). Let A, B and C be three abelian categories and let F :
A → B and G : B → C be covariant left-exact functors such that if I is an injective object of A then F (I)
is G-acyclic. Then there exists a spectral sequence Ep,q

2 = RpG ◦RqF =⇒ Rp+q(G ◦ F ).
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