Basics of Homological Algebra

1 Definitions

Definition 1. A category A is said to be abelian if for any objects M and N, Hom(M, N) is an abelian group, kernels and cokernels exist in the category and if finite direct sums exist in the category.

Example 2. The categories of sets, the category Ab-Gr of abelian groups and the category Mod_R of modules over a fixed ring R are all abelian categories.

Definition 3. Let A be an abelian category. A sequence $K^{\bullet} = \cdots \to M_{i-1} \xrightarrow{d_{i-1}} M_i \xrightarrow{d_i} M_{i+1} \to \cdots$ is said to be a complex if $d_i \circ d_{i-1} = 0$ for all i. The complex K^{\bullet} is said to be exact at M_i if $\operatorname{Im} d_{i-1} = \ker d_i$; the complex is said to be exact if it is exact at all i. The cohomology of K^{\bullet} is $H^i(K^{\bullet}) = \ker d_i / \operatorname{Im} d_{i-1}$; the cohomology groups fit into a complex $H^{\bullet}(K^{\bullet}) = \cdots \to H^{i-1}(K^{\bullet}) \to H^i(K^{\bullet}) \to \cdots$.

Remark 4. The complex $0 \to M \to N$ is exact at M if the map $M \to N$ is injective. The complex $M \to N \to 0$ is exact at N if $M \to N$ is surjective.

Definition 5. A covariant functor $F : A \to B$ between two abelian categories is said to be left-exact if for all exact sequences $0 \to M \to N \to P \to 0$ in A one gets an exact sequence $0 \to F(M) \to F(N) \to F(P)$ in B.

Example 6. Let G be a profinite group and let $\mathbb{Z}[G]$ be the ring generated linearly over \mathbb{Z} by elements of G, with multiplication extended by linearity from multiplication in the group G. Let Mod_G be the category of continuous $\mathbb{Z}[G]$ -modules, where a $\mathbb{Z}[G]$ -module M is said to be continuous if for all $m \in M$ the stabilizer $Stab_G(m) = \{g \in G | gm = m\}$ is an open subgroup of G. Then Mod_G is an abelian category and the functor $F: Mod_G \to Ab$ -Gr given by $F(M) = M^G = \{m \in M | gm = m, \forall g \in G\}$ is left-exact.

Definition 7. Let A and B be two categories and let $F, G : A \to B$ be two functors. A natural transformation $f : F \to G$ is the datum, for each object M in A of a morphism $f_M : F(M) \to G(M)$ such that if $M \to N$ is a morphism then we get a commutative diagram

$$F(M) \xrightarrow{f_M} G(M)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$F(N) \xrightarrow{f_N} G(N)$$

Definition 8. Let A be an abelian category. An object I of A is said to be injective if for all morphisms f and all injective morphisms g there exists a morphism h making the diagram commutative

$$M \xrightarrow{f} I$$

$$g \bigvee_{p \not a f} h$$

$$N$$

An object P of A is said to be projective if for all morphisms f and all surjective morphisms g there exists a morphism h making the diagram commutative

A category A is said to have "enough injectives" if for every object M of A there exists an injective object I of A and an injection $A \hookrightarrow I$. The category A has "enough projectives" if for every object M of A there exists a projective object P of A and a surjection $P \to M$.

Example 9. In the category $\operatorname{Mod}_{\mathbb{Z}}$ of abelian groups (or equivalently of modules over \mathbb{Z}) the object \mathbb{Z} is not injective because while \mathbb{Z} injects into \mathbb{Q} there is no morphism $\mathbb{Q} \to \mathbb{Z}$. However, the object \mathbb{Q}/\mathbb{Z} is injective.

Lemma 10. Let A be a category with enough injectives. Then every object M of A has an injective resolution, *i.e.*, there exists an exact sequence

$$0 \to M \to I_0 \to I_1 \to \dots$$

where I_n are injectives. We write such a resolution as $0 \to M \to I^{\bullet}$.

Proof. Assume we inductively have an exact sequence

$$0 \to M \to I_0 \to \ldots \to I_k$$

where I_k are injective. For k = 1 this follows from the fact that the category has enough injectives. Consider an injection $I_k / \text{Im } I_{k-1}$ into some injective object I_{k+1} . Then

$$0 \to M \to I_0 \to \ldots \to I_k \to I_{k+1}$$

will be exact. In the limit we get the desired injective resolution.

Lemma 11. Given two injective resolutions $0 \to M \to I_1^{\bullet}$ and $0 \to M \to I_2^{\bullet}$ we get an isomorphism of complexes $H^{\bullet}(I_1^{\bullet}) \cong H^{\bullet}(I_2^{\bullet})$, in other words, for each $i \ge 0$ we have $H^0(I_1^{\bullet}) \cong H^0(I_2^{\bullet})$.

Proof. One can show that there exist maps of complexes $\alpha : I_1^{\bullet} \to I_2^{\bullet}$ and $\beta : I_2^{\bullet} \to I_1^{\bullet}$ such that $\alpha \circ \beta$ and $\beta \circ \alpha$ are homotopic to the identity. Recall that a map of complexes $f : K^{\bullet} \to K^{\bullet}$ is homotopic to 0 (f and g are homotopic if f - g is homotopic to 0) if it induces the 0 map on cohomology. For details, see Eisenbud Commutative algebra with a view towards algebraic geometry Appendix A.3.

Proposition 12. Let $F : A \to B$ be a covariant left-exact functor between two abelian categories with A having enough injectives. Then there exist covariant functors $R^i F : A \to B$ called the right derived functors of F such that for all exact sequences $0 \to M \to N \to P \to 0$ we get an exact sequence

$$0 \to F(M) \to F(N) \to F(P) \to R^1 F(M) \to R^1 F(N) \to R^1 F(P) \to R^2 F(M) \to \dots$$

Proof. Let M be an object of A and let $0 \to M \to I^{\bullet}$ be an injective resolution. Define $R^i F(M) = H^i(F(I^{\bullet}))$ where H^i is the *i*-th cohomology group of the complex I^{\bullet} . The previous lemma implies that this definition is independent of the choice of injective resolution I^{\bullet} .

Example 13. Let G be a profinite group and let $F : Mod_G \to Ab$ -Gr given by $F(M) = M^H$. The group cohomology $H^i(G, -)$ is the *i*-th right-derived functor of F.

Definition 14. Let $F : A \to B$ be a left-exact functor between two abelian categories. An object M of A is said to be F-acyclic if $R^i F(M) = 0$ for i > 0. In particular, if G is a profinite group an object M of Mod_G is acyclic if $H^i(G, M) = 0$ for i > 0.

Note 15. If I is an injective module in Mod_G then I is acyclic.

Proof. An injective resolution for I is simply $0 \to I \to I \to 0$ and so $0 \to I^G \to I^G \to 0$ is still exact. Thus $H^i(G, I) = 0$ for i > 0.

Lemma 16. Let M be a module in Mod_G and let $0 \to M \to J^{\bullet}$ be a resolution such that J_n is acyclic for all n. Then $H^i(G, M) = H^i(J^{\bullet})$.

Proof. This is easy.

Definition 17. A covariant functor $F : A \to B$ between two abelian categories A and B is said to be effaceable if for any object M of A there exists an injection $M \hookrightarrow N$ in A such that $F(M) \to F(N)$ is the 0 morphism.

Example 18. If G is a profinite group and $F(M) = M^G$ as before the $H^i(G, -) = R^i F$ is effaceable for i > 0.

Proof. Let I be an injective object containing M. It is injective so acyclic and therefore $H^i(G, M) \rightarrow H^i(G, I) = 0$.

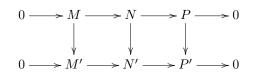
2 Covariant δ -functors

Definition 19. By a covariant δ -functor between two abelian categories A and B we mean a series of covariant functors $H^i: A \to B$ with the property that for each exact sequence $0 \to M \to N \to P \to 0$ in A we get homomorphisms $\delta_i: H^i(P) \to H^{i+1}(M)$ such that

1. If $0 \to M \to N \to P \to 0$ is exact then get an exact sequence

$$0 \to H^0(M) \to H^0(N) \to H^0(P) \xrightarrow{\delta_0} H^1(M) \to H^1(N) \to H^1(P) \xrightarrow{\delta_1} H^2(M) \to \cdots$$

2. If



are two exact sequences such that the diagram commutes then we get a commutative diagram

$$\begin{array}{c} H^{i}(P) \xrightarrow{\delta_{i}} H^{i+1}(M) \\ \downarrow & \downarrow \\ H^{i}(P') \xrightarrow{\delta_{i}} H^{i+1}(M') \end{array}$$

A δ -functor is called universal if for any other δ -functor $(\overline{H}^i, \overline{\delta}_i)$ and any natural transformation $f: H^0 \to \overline{H}^0$ there exist unique natural transformations $f^i: H^i \to \overline{H}^i$ commuting with the δ_i -s.

Example 20. Let F be a left-exact covariant functor. Then the right derived functors $R^i F$ form a δ -functor. **Lemma 21.** Let $H = (H^i, \delta_i)$ be a δ -functor such that H^i is effaceable for i > 0. Then H is a universal δ -functor.

Corollary 22. If G is a profinite group then $H^i(G, -), \delta_i$ is a universal δ -functor.

3 Spectral sequences

Definition 23. A spectral sequence is a collection of objects $E_i^{p,q}$ of an abelian category for $i \ge 1$ and $p,q \in \mathbb{Z}$, together with morphisms $d_i^{p,q} : E_i^{p,q} \to E_i^{p+i,q-i+1}$ such that $d_i \circ d_i = 0$, such that $E_{i+1}^{p,q}$ is the cohomology group of the complex $\ldots \to E_i^{p-i,q+i-1} \to E_i^{p,q} \to E_i^{p+i,q-i+1} \to \ldots$ at the position of $E_i^{p,q}$.

Definition 24. A spectral sequence $E_i^{p,q}$ stabilizes if for large *i* we have $E_i^{p,q} = E_{\infty}^{p,q}$ is independent of *i*.

Definition 25. A spectral sequence $E_i^{p,q}$ abuts to E^{p+q} in which case we write $E_i^{p,q} \Longrightarrow E^{p+q}$ if it stabilizes and if there exists a filtration $E^{p+q} = \operatorname{Fil}^0 \supset \operatorname{Fil}^1 \supset \ldots \supset \operatorname{Fil}^k = 0$ such that $E_{\infty}^{i,p+q-i} \cong \operatorname{Fil}^i / \operatorname{Fil}^{i+1}$.

Theorem 26 (Grothendieck spectral sequence). Let A, B and C be three abelian categories and let $F : A \to B$ and $G : B \to C$ be covariant left-exact functors such that if I is an injective object of A then F(I) is G-acyclic. Then there exists a spectral sequence $E_2^{p,q} = R^p G \circ R^q F \Longrightarrow R^{p+q}(G \circ F)$.