Math 162b Problem Set 1

Andrei Jorza

due January 13, 4pm

These exercises require two inputs from class field theory.

- The *p*-adic cyclotomic character $\chi_p : G_{\mathbb{Q}_p} \to \mathbb{Z}_p^{\times}$ defined as the exponent such that for every p^k -th root of unity ζ and $g \in G_{\mathbb{Q}_p}$ one has $g\zeta = \zeta^{\chi_p(g)}$. Alternatively, one may use the inverse Artin map $\operatorname{rec}^{-1} : I_{\mathbb{Q}_p}^{\operatorname{ab}} \cong \mathbb{Z}_p^{\times}$ and define $\chi_p(\operatorname{Frob}_p^m \sigma) = \operatorname{rec}^{-1}(\sigma)$ where $\sigma \in I_{\mathbb{Q}_p}$.
- One has an isomorphism

$$G^{\rm ab}_{\mathbb Q}\cong \mathbb A^\times_{\mathbb Q}/\overline{\mathbb Q^\times(0,\infty)}$$

Exercise 1 (Results needed for Ax-Sen). In this exercise you will study powers of p in binomial coefficients.

- 1. Show that $v_p((p^k n)!) = \frac{n(p^k 1)}{p 1} + v_p(n!).$
- 2. Show that $v_p\left(\binom{p^{k+1}}{p^k}\right) = 1.$
- 3. Show that if $p \nmid n$ then $v_p\left(\binom{p^k n}{p^k}\right) = 0$.

Exercise 2 (Stable lattices). Let G be a profinite group and let $\rho : G \to \operatorname{GL}(n, \overline{\mathbb{Q}}_{\ell})$ be a continuous Galois representation. The purpose of this exercise is to show that a conjugate of ρ takes values in $\operatorname{GL}(n, \mathcal{O}_L)$ for some finite extension L/\mathbb{Q}_{ℓ} (thus one can reduce modulo ℓ).

- 1. Show that $\operatorname{Im} \rho$ is compact Hausdorff.
- 2. Show that there exist finite extensions L_k/\mathbb{Q}_ℓ such that $\operatorname{Im} \rho = \bigcup_k (\operatorname{Im} \rho \cap \operatorname{GL}(n, L_k)).$
- 3. Use the Baire category theorem to deduce that for some k, the interior U of $\text{Im } \rho \cap \text{GL}(n, L_k)$ is not empty.
- 4. Show that $\text{Im }\rho/U$ is a finite coset space and show that $L = L_k$ may be chosen such that these cosets are defined over L.
- 5. Take the average of \mathcal{O}_L^n over these cosets to deduce the existence of a full rank lattice stable under G, i.e., that a conjugate of ρ lands in $\mathrm{GL}(n, \mathcal{O}_L)$.

Exercise 3 (Weil-Deligne representations). Let K/\mathbb{Q}_p be a finite extension and $\ell \neq p$. Recall that an ℓ -adic Weil-Deligne representation of W_K is a pair (r, N) of a continuous Galois representation $r: W_K \to \operatorname{GL}(n, \overline{\mathbb{Q}}_\ell)$ (recall that continuity is with respect to the topology on the Weil group W_K , i.e., r is a homomorphism with open kernel) and a linear map $N \in \operatorname{End}(r)$ such that $r(g)Nr(g)^{-1} = |\operatorname{rec}_K^{-1}(g)|N$, where $\operatorname{rec}_K: K^{\times} \cong W_K^{\mathrm{ab}}$ is the Artin reciprocity map. The Weil-Deligne representation (r, N) is said to be bounded if the eigenvalues of all r(g) are ℓ -adic units. The point of this exercise is to show that if $\ell \neq p$ then continuous ℓ -adic representations of the full Galois group G_K are the same as bounded Weil-Deligne representations of W_K .

- 1. Show that N is a nilpotent matrix.
- 2. Let $t : I_K \to I_K/P_K \cong \operatorname{Gal}(K^t/K^{\operatorname{ur}}) \cong \prod_{q \neq p} \mathbb{Z}_q(1) \to \mathbb{Z}_\ell(1) \approx \mathbb{Z}_\ell$ given by $\sigma(\varpi_K^{1/n}) \equiv t(\sigma) \varpi_K^{1/n}$ (mod *n*). Show that *t* is well-defined up to \mathbb{Z}_ℓ^{\times} .
- 3. Let ϕ be a lift to G_K of the geometric Frobenius $\operatorname{Frob}_K \in G_{K^{\mathrm{ur}}/K} \cong G_{k_K}$ (well-defined up to conjugacy); you may assume (from 160b) that $t(\phi^n \sigma \psi^{-n}) = q_K^{-n} t(\sigma)$, and that $\operatorname{rec}_K^{-1}(\phi)$ is a uniformizer. Given a bounded Weil-Deligne representation (r, N) define

$$\rho(\phi^n \sigma) = r(\phi^n \sigma) \exp(t(\sigma)N)$$

for $n \in \mathbb{Z}$ and $\sigma \in I_K$.

- (a) Show that if $q_K = \#k_K$ then $\exp(t(\sigma)N)r(\phi^n\sigma) = r(\phi^n\sigma)\exp(t(\sigma)q_K^nN)$.
- (b) Show that $\rho(\phi^n \sigma)\rho(\phi^m \tau) = \rho(\phi^n \sigma \phi^m \tau)$.
- (c) Show that ρ extends to a continuous ℓ -adic representation $\rho: G_K \to \operatorname{GL}(n, \overline{\mathbb{Q}}_{\ell})$ (you may assume here that (r, N) being bounded is equivalent to $\operatorname{Im} r$ having compact closure).
- (d) Show that the isomorphism class of ρ is independent of the choice of ϕ or t.
- 4. Conversely, start with a continuous ℓ -adic representation $\rho : G_K \to \operatorname{GL}(n, \overline{\mathbb{Q}}_{\ell})$. You may assume Grothendieck's ℓ -adic monodromy theorem, that ρ is potentially unramified, i.e., there exists a finite extension L/K such that $\rho|_{G_L}$ is unramified, or equivalently that $\rho(I_L) = I_n$.
 - (a) Let L/\mathbb{Q}_{ℓ} be a finite extension such that (a suitably chosen conjugate of) ρ takes values in $\operatorname{GL}(n, \mathcal{O}_L)$. Consider the group $H = \rho^{-1}(1 + \ell^2 M_{n \times N}(\mathcal{O}_L)) \cap I_K$. Show that H is an open normal pro- ℓ group.
 - (b) Deduce that $\rho: H \to 1 + \ell^2 M_{n \times N}(\mathcal{O}_L)$ extends to $\tilde{\rho}: \mathbb{Z}_\ell \to 1 + \ell^2 M_{n \times N}(\mathcal{O}_L)$.
 - (c) Show that $t(H) = \ell^s \mathbb{Z}_{\ell}$ for some s (ℓ -adic monodromy!) and write $N = \log(\tilde{\rho}(\ell^s))\ell^{-s}$.
 - (d) Show that for $h \in H$, $\rho(h) = \exp(t(h)N)$.
 - (e) Show that $r(\phi^n \sigma) = \rho(\phi^n \sigma) \exp(-t(\sigma)N)$ is a homomorphism with open kernel.
 - (f) Show that (r, N) is a Weil-Deligne representation.
 - (g) Show that $\operatorname{Im} r \subset \operatorname{Im} \rho \exp(\mathbb{Z}_{\ell} N)$ and thus that (r, N) is bounded.

Exercise 4 (Compatible systems for Hecke characters). Let $\psi : \mathbb{A}_{\mathbb{Q}}^{\times} / \mathbb{Q}^{\times} \to \mathbb{C}^{\times}$ be a Hecke character such that the infinite component ψ_{∞} in $\psi = \psi_{\infty} \otimes \bigotimes_{p} \psi_{p}$ is the character $\psi_{\infty}(x) = |x|^{n}$ or $\operatorname{sign}(x)|x|^{n}$ for an integer n. (You can think of these as algebraic automorphic representations on $\operatorname{GL}(1)$.)

- 1. Show that for every prime ℓ there exists a (continuous) character $\eta_{\ell} : \mathbb{Q}_{\ell}^{\times} \to \overline{\mathbb{Q}}_{\ell}^{\times}$ such that $\eta_{\ell}(x) = \psi_{\infty}(x)$ for $x \in \mathbb{Q}^{\times}$.
- 2. Fix an isomorphism $\mathbb{C} \cong \overline{\mathbb{Q}}_{\ell}$. Show that the character $\Psi_{\ell} = \psi \psi_{\infty}^{-1} \eta_{\ell} : \mathbb{A}_{\mathbb{Q}}^{\times} \to \mathbb{C}^{\times}$ is continuous, vanishes on \mathbb{Q}^{\times} and $(0, \infty)$ and deduce that it induces a continuous ℓ -adic Galois representation $\Psi_{\ell} : G_{\mathbb{Q}} \to \operatorname{GL}(1, \overline{\mathbb{Q}}_{\ell})$.
- 3. Show that if p is a prime such that ψ_p is unramified (i.e., $\psi_p(\mathbb{Z}_p^{\times}) = 1$) and if ℓ and ℓ' are two primes different from p then $\Psi_{\ell}|_{G_{\mathbb{Q}_p}}$ and $\Psi_{\ell'}|_{G_{\mathbb{Q}_p}}$ are unramified and act identically on Frob_p.
- 4. Show that if ψ_p is unramified then $\Psi_p|_{G_{\mathbb{Q}_p}}$ is of the form χ_p^n times an unramified character. (These are the prototypical "crystalline" representations and the integer n is the "Hodge-Tate weight"; note that it has no chance of being unramified, since the cyclotomic character is very ramified; in general, the local p-adic Galois representation attached to an automorphic representation which is unramified at p will be crystalline with Hodge-Tate weights dictated by the component at infinity.)