Math 162b Problem Set 2

Andrei Jorza

due Wednesday, February 1, 2012

Exercise 1. Let $K/F = \mathbb{Q}_p$ be a finite extension and let $K_n = K(\zeta_{p^n})$ and $F_n = F(\zeta_{p^n})$. Recall that we showed in class that $p^n v_p(\mathcal{D}_{K_n/F_n})$ is bounded. Show that there exists a constant c and a bounded sequence a_n such that

$$v_p(\mathcal{D}_{K_n/F}) = n + c + \frac{a_n}{p^n}$$

[Hint: recall that $G^u_{F_n/F} = G_{F_n/F_{\lfloor u \rfloor}}$.]

Exercise 2. In this exercise you will show that $\overline{\mathbb{Q}_p}$ is not complete, i.e., that $\mathbb{C}_p \neq \overline{\mathbb{Q}_p}$.

- 1. Show that one may find roots of unity a_n such that
 - (a) $a_n \in \mathbb{Q}_p^{\mathrm{ur}}$, (b) $a_{n-1} \in \mathbb{Q}_p(a_n)$ and (c) $[\mathbb{Q}_p(a_n) : \mathbb{Q}_p(a_{n-1})] > n$.
- 2. Show that $\alpha = \sum_{n=1}^{\infty} a_n p^n \in \mathbb{C}_p$.
- 3. If $\alpha \in \overline{\mathbb{Q}_p}$ let $m = [\mathbb{Q}_p(\alpha) : \mathbb{Q}_p]$, $\alpha_m = \sum_{n=1}^m a_n p^n$. Show that there exists a Galois extension M/\mathbb{Q}_p such that $\alpha, \alpha_m, a_m \in M$ and that there exist $\sigma_1, \ldots, \sigma_{m+1} \in \operatorname{Gal}(M/\mathbb{Q}_p(a_{n-1}))$ such that $\sigma_1(a_m), \ldots, \sigma_{m+1}(a_m)$ are all distinct.
- 4. Show that $\sigma_i(a_m)$ and $\sigma_j(a_m)$ for $i \neq j$ are distinct modulo p and deduce that $v_p(\sigma_i(a_m) \sigma_j(a_m)) = 0$.
- 5. Deduce that $v_p(\sigma_i(\alpha_m) \sigma_j(\alpha_m)) = m$.
- 6. Show that $v_p(\sigma_i(\alpha) \sigma_i(\alpha_m)) \ge m + 1$.
- 7. Deduce that $v_p(\sigma_i(\alpha) \sigma_j(\alpha)) = m$.
- 8. Conclude that the $\sigma_i(\alpha)$ are distinct and derive a contradiction.

Exercise 3. Let K/\mathbb{Q}_p be a finite extension.

- 1. Let L/K be an algebraic extension. We've seen that $\hat{L} \neq L$ in the previous exercise. Show that $\hat{L} \cap \overline{K} = L$.
- 2. Let M/K_{∞} be a finite extension. Show that there exists a finite extension L/K such that $M = L_{\infty}$.

Exercise 4. Let p be a prime.

- 1. Show that $\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ converges in the range $|x| < |p|^{\frac{1}{p-1}}$.
- 2. Show that $\log(1+x) = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k}$ converges in the range |x| < 1.
- 3. Show that one gets a G_K -equivariant homomorphism $\log_{\overline{\mathbb{Z}}_p^{\times}} : \overline{\mathbb{Z}}_p^{\times} \to \overline{\mathbb{Z}}_p$.
- 4. Show that for every $c \in \overline{\mathbb{Q}}_p$ there exists a unique G_K -equivariant homomorphism $\log_{\overline{\mathbb{Q}}_p^{\times}} : \overline{\mathbb{Q}}_p^{\times} \to \overline{\mathbb{Q}}_p$ such that $\log_{\overline{\mathbb{Q}}_p^{\times}} |_{\overline{\mathbb{Z}}_p^{\times}} = \log_{\overline{\mathbb{Z}}_p^{\times}}$ and $\log_{\overline{\mathbb{Q}}_p^{\times}}(p) = c$.