Math 162b Problem Set 3

Andrei Jorza

due Wednesday, February 15, 2012

Exercise 1. Show that if A is a strict p-ring with perfect residue ring R and if $[\cdot] : R \to A$ is the Teichmüller lift then every element $\alpha \in A$ can be written uniquely as

$$\alpha = \sum_{n \ge 0} p^n[\alpha_n]$$

for $\alpha_n \in R$.

Exercise 2. Let
$$\overline{S} = \mathbb{F}_p[X_i^{p^{-m}}, Y_i^{p^{-m}}]_{i,m\geq 0}$$
, $S = \mathbb{Z}_p[X_i^{p^{-m}}, Y_i^{p^{-m}}]_{i,m\geq 0}$ and $\widehat{S} = \varprojlim S/p^n S$.

1. If $\overline{S}_i \in \overline{S}$ such that

$$\sum_{n\geq 0} p^n[X_n] + \sum_{n\geq 0} p^n[Y_n] = \sum_{n\geq 0} p^n[\overline{S}_n]$$

in \widehat{S} show that \overline{S}_n is a homogeneous polynomial of degree 1 in X_0, \ldots, X_n , and a homogeneous polynomial of degree 1 in Y_0, \ldots, Y_n .

2. If $\overline{P}_i \in \overline{S}$ such that

$$\sum_{n\geq 0} p^n[X_n] \sum_{n\geq 0} p^n[Y_n] = \sum_{n\geq 0} p^n[\overline{P}_n]$$

in \widehat{S} show that \overline{P}_n does not contain monomials with only X-s or only Y-s.

Exercise 3. Let $D_{\mathrm{HT},K}$: $\operatorname{Rep}_{\mathbb{C}_p}(G_K) \to \operatorname{GrVec}_K$. Show that if L/K is a finite extension then $D_{\mathrm{HT},L} \cong D_{\mathrm{HT},K} \otimes_K L$.

Exercise 4. Consider $V \in \operatorname{Rep}_{\mathbb{C}_p}(G_K)$ the two dimensional representation with the action

$$g \mapsto \begin{pmatrix} 1 & \log \chi_{\text{cycl}}(g) \\ 0 & 1 \end{pmatrix}$$

Show that $\Theta_{\text{Sen}} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Exercise 5. Let $\mathbb{B}^n_{\operatorname{Sen}} \subset \mathbb{C}_p[\![T]\!]$ be the set of power series with radius of convergence at least p^{-n} . The Galois group G_K acts on $\mathbb{C}_p[\![T]\!]$ semilinearly via $g(T) = T + \log \chi_{\operatorname{cycl}}(g)$.

- 1. Show that B_{Sen}^n is stable under the action of G_{K_n} .
- 2. If $f = \sum_{k \ge 0} a_k T^k \in (\mathbf{B}_{\mathrm{Sen}}^n)^{G_{K_n}}$ show that $a_k \in \widehat{K_{\infty}}$ for all $k \ge 0$.

3. Show that for f as above and any $g \in G_{K_n}$ we have

$$a_i = \sum_{k \ge i} \binom{k}{i} g^{-1}(a_k) (-\log \chi_{\text{cycl}}(g))^{k-i}$$

4. Deduce that

$$g(\mathrm{pr}_m(a_i)) = \sum_{k \ge i} \binom{k}{i} \mathrm{pr}_m(a_k) (-\log \chi_{\mathrm{cycl}}(g))^{k-i}$$

- 5. Show that the left hand side is a locally constant function of g.
- 6. Show that the right hand side is an analytic function of g.
- 7. Deduce that both sides of the equality are constant, equal to 0 when $i \ge 1$.
- 8. Conclude that $(\mathbf{B}_{\mathrm{Sen}}^n)^{G_{K_n}} = K_n$.
- 9. For $V \in \operatorname{Rep}_{\mathbb{C}_p}(G_K)$ let e_1, \ldots, e_d be the K_n basis of $\operatorname{D}_{\operatorname{Sen}}(V)$ which descends to K_n . Show that $f_i = \exp(-T\Theta_{\operatorname{Sen}})e_i \in \operatorname{B}_{\operatorname{Sen}} \otimes_{\mathbb{C}_p} V := \varinjlim_n \operatorname{B}^n_{\operatorname{Sen}} \otimes_{\mathbb{C}_p} V.$
- 10. Prove that the K_{∞} -linear map $\iota(e_i) = f_i$ gives $D_{Sen}(V) = D_{B_{Sen}} := \varinjlim_n D_{B_{Sen}^n}(V)$ as K_{∞} vector spaces.
- 11. Show that $-\frac{d}{dT}\iota(v) = \iota(\Theta_{\text{Sen}}(v))$ and thus that $D_{B_{\text{Sen}}} : \operatorname{Rep}_{\mathbb{C}_p}(G_K) \to \mathcal{S}_{K_{\infty}}$ is the same as D_{Sen} .