Math 162b
 Problem Set 3

Andrei Jorza

due Wednesday, February 15, 2012

Exercise 1. Show that if A is a strict p-ring with perfect residue ring R and if $[\cdot]: R \rightarrow A$ is the Teichmüller lift then every element $\alpha \in A$ can be written uniquely as

$$
\alpha=\sum_{n \geq 0} p^{n}\left[\alpha_{n}\right]
$$

for $\alpha_{n} \in R$.
Exercise 2. Let $\bar{S}=\mathbb{F}_{p}\left[X_{i}^{p^{-m}}, Y_{i}^{p^{-m}}\right]_{i, m \geq 0}, S=\mathbb{Z}_{p}\left[X_{i}^{p^{-m}}, Y_{i}^{p^{-m}}\right]_{i, m \geq 0}$ and $\widehat{S}=\lim _{\longleftarrow} S / p^{n} S$.

1. If $\bar{S}_{i} \in \bar{S}$ such that

$$
\sum_{n \geq 0} p^{n}\left[X_{n}\right]+\sum_{n \geq 0} p^{n}\left[Y_{n}\right]=\sum_{n \geq 0} p^{n}\left[\bar{S}_{n}\right]
$$

in \widehat{S} show that \bar{S}_{n} is a homogeneous polynomial of degree 1 in X_{0}, \ldots, X_{n}, and a homogeneous polynomial of degree 1 in Y_{0}, \ldots, Y_{n}.
2. If $\bar{P}_{i} \in \bar{S}$ such that

$$
\sum_{n \geq 0} p^{n}\left[X_{n}\right] \sum_{n \geq 0} p^{n}\left[Y_{n}\right]=\sum_{n \geq 0} p^{n}\left[\bar{P}_{n}\right]
$$

in \widehat{S} show that \bar{P}_{n} does not contain monomials with only $X-s$ or only Y-s.
Exercise 3. Let $\mathrm{D}_{\mathrm{HT}, K}: \operatorname{Rep}_{\mathbb{C}_{p}}\left(G_{K}\right) \rightarrow \operatorname{GrVec}_{K}$. Show that if L / K is a finite extension then $\mathrm{D}_{\mathrm{HT}, L} \cong$ $\mathrm{D}_{\mathrm{HT}, K} \otimes_{K} L$.
Exercise 4. Consider $V \in \operatorname{Rep}_{\mathbb{C}_{p}}\left(G_{K}\right)$ the two dimensional representation with the action

$$
g \mapsto\left(\begin{array}{cc}
1 & \log \chi_{\mathrm{cycl}}(g) \\
0 & 1
\end{array}\right)
$$

Show that $\Theta_{\mathrm{Sen}}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.
Exercise 5. Let $\mathrm{B}_{\mathrm{Sen}}^{n} \subset \mathbb{C}_{p} \llbracket T \rrbracket$ be the set of power series with radius of convergence at least p^{-n}. The Galois group G_{K} acts on $\mathbb{C}_{p} \llbracket T \rrbracket$ semilinearly via $g(T)=T+\log \chi_{\text {cycl }}(g)$.

1. Show that $\mathrm{B}_{\text {Sen }}^{n}$ is stable under the action of $G_{K_{n}}$.
2. If $f=\sum_{k \geq 0} a_{k} T^{k} \in\left(\mathrm{~B}_{\mathrm{Sen}}^{n}\right)^{G_{K_{n}}}$ show that $a_{k} \in \widehat{K_{\infty}}$ for all $k \geq 0$.
3. Show that for f as above and any $g \in G_{K_{n}}$ we have

$$
a_{i}=\sum_{k \geq i}\binom{k}{i} g^{-1}\left(a_{k}\right)\left(-\log \chi_{\mathrm{cycl}}(g)\right)^{k-i}
$$

4. Deduce that

$$
g\left(\operatorname{pr}_{m}\left(a_{i}\right)\right)=\sum_{k \geq i}\binom{k}{i} \operatorname{pr}_{m}\left(a_{k}\right)\left(-\log \chi_{\mathrm{cycl}}(g)\right)^{k-i}
$$

5. Show that the left hand side is a locally constant function of g.
6. Show that the right hand side is an analytic function of g.
7. Deduce that both sides of the equality are constant, equal to 0 when $i \geq 1$.
8. Conclude that $\left(\mathrm{B}_{\mathrm{Sen}}^{n}\right)^{G_{K_{n}}}=K_{n}$.
9. For $V \in \operatorname{Rep}_{\mathbb{C}_{p}}\left(G_{K}\right)$ let e_{1}, \ldots, e_{d} be the K_{n} basis of $\mathrm{D}_{\mathrm{Sen}}(V)$ which descends to K_{n}. Show that $f_{i}=\exp \left(-T \Theta_{\text {Sen }}\right) e_{i} \in \mathrm{~B}_{\text {Sen }} \otimes \mathbb{C}_{p} V:=\underset{n}{\lim } \mathrm{~B}_{\text {Sen }}^{n} \otimes \mathbb{C}_{p} V$.
10. Prove that the K_{∞}-linear map $\iota\left(e_{i}\right)=f_{i}$ gives $\mathrm{D}_{\mathrm{Sen}}(V)=\mathrm{D}_{\mathrm{B}_{\mathrm{Sen}}}:=\underset{n}{\lim _{\overrightarrow{\mathrm{B}}}} \mathrm{D}_{\mathrm{B}_{\mathrm{Sen}}^{n}}(V)$ as K_{∞} vector spaces.
11. Show that $-\frac{d}{d T} \iota(v)=\iota\left(\Theta_{\operatorname{Sen}}(v)\right)$ and thus that $\mathrm{D}_{\mathrm{B}_{\mathrm{Sen}}}: \operatorname{Rep}_{\mathbb{C}_{p}}\left(G_{K}\right) \rightarrow \mathcal{S}_{K_{\infty}}$ is the same as $\mathrm{D}_{\text {Sen }}$.
