MATH 162B PROBLEM SET 4

ANDREI JORZA

This problem set has several sections, and some definitions.

Contents

1.	Divided powers	1
2.	Towards the fundamental sequence for B_{cris}	2
3.	Frobenius eigenspaces on B _{cris}	2

1. DIVIDED POWERS

Definition 1 (Divided powers). Divided powers are a device which allows one to make sense of $x^n/n!$ even in positive characteristic.

Let A be a commutative ring and I and ideal of A. A divided power structure (a PD structure, for puissances divisées) on I is a collection of maps $\gamma_i : I \to A$ for $i \ge 0$ such that

- (i) For all $x \in I$ we have $\gamma_0(x) = 1$, $\gamma_1(x) = x$ and $\gamma_i(x) \in I$ for $i \ge 2$.
- (ii) For all $x, y \in I$ we have

$$\gamma_n(x+y) = \sum_{i+j=n} \gamma_i(x)\gamma_j(y)$$

- (iii) For $\lambda \in A$ and $x \in I$ we have $\gamma_n(\lambda x) = \lambda^n \gamma_n(x)$.
- (iv) For $x \in I$ we have

$$\gamma_i(x)\gamma_j(x) = \binom{i+j}{i}\gamma_{i+j}(x)$$

(v) For $x \in I$ we have

$$\gamma_p(\gamma_q(x)) = \frac{(pq)!}{p!(q!)^p} \gamma_{pq}(x)$$

In this case we say that (A, I, γ) is a PD ring.

- **Exercise 1.** (1) Show that $n!\gamma_n(x) = x^n$ for $x \in I$ and $n \ge 1$ and deduce that every ideal of a Q-algebra has a unique PD structure.
 - (2) Let K/\mathbb{Q}_p be a finite extension, let \mathcal{O}_K be the ring of integers and π_K be a uniformizer. Let $e = e_{K/\mathbb{Q}_p}$ be the ramification index in which case $v_K(p) = e$ where $v_K(\pi_K) = 1$. Show that the maximal ideal of \mathcal{O}_K has a PD structure if and only if $e \leq p 1$.
 - (3) Let (A, I, γ) be a PD ring such that I is principal. Show that for any A-algebra B the ideal IB has a PD structure which restricts to γ on $I \subset IB$.
 - (4) Let k be a ring of characteristic 2 and let

$$A = k[x_1, \dots, x_6] / (x_1^2, \dots, x_6^2, x_1x_2 + x_3x_4 + x_5x_6)$$

Show that the ideal $I = (x_1, \ldots, x_6)$ has no PD structure as follows:

- (a) Show that $\gamma_2(x_i x_j) = 0$.
- (b) Show that $\gamma_2(x_1x_2 + x_3x_4) = 0 = x_1x_2x_3x_4$ and conclude that no γ can exist.

Date: due Wednesday, February 29, 2012.

2. Towards the fundamental sequence for B_{cris}

Exercise 2. This exercise feeds into the proof of the fundamental exact sequence for B_{cris} . For a positive integer n let n = q(n)(p-1) + r(n) where $0 \le r(n) < p-1$ and write

$$t^{\{n\}} = t^{r(n)} \gamma_{q(n)} \left(\frac{t^{p-1}}{p}\right)$$

Define $K_0 = W(k_K)[1/p]$ and $\Lambda_{\varepsilon} \subset K_0[t]$ be the set of power series that can be written as

$$\sum_{n\geq 0} a_n t^{\{n\}}$$

where $a_n \in W(k_K)$ converge *p*-adically to 0. Recall that we have defined $I^{[r]} A_{cris} = \cap \varphi^{-n}(\operatorname{Fil}^r A_{cris})$.

- (1) S_{ε} and Λ_{ε} .
 - (a) Show that Λ_{ε} is a φ -stable and G_K -stable subring of $K_0[t]$.
 - (b) Show that $[\varepsilon] 1 \in \Lambda_{\varepsilon}$.
- (c) Show that S_{ε} defined as $W(k_K)[[\varepsilon] 1]$ is a G_K -stable and φ -stable sub- $W(k_K)$ -algebra of Λ_{ε} . (2) $I^{[r]} \mathbf{A}_{\mathrm{cris}}$.
 - (a) Write $I(r) = \{\sum_{n \ge r} a_n t^{\{n\}} | a_n \in W(\mathbb{R}), a_n \to 0 \text{ p-adically} \}$. Show that $I(r) \subset I^{[r]}$.

 - (b) Show that $I^{[0]} \subset I(0)$. (c) If $a = \sum_{n \ge r-1} a_n t^{\{n\}} \in I^{[r]}$ show that $a_{r-1} t^{\{r-1\}} \in I^{[r]}$.
 - (d) Show that $a_{r-1} \in I^{[1]}$ W(R) and deduce that $a_{r-1}t^{\{r-1\}} \in ([\varepsilon]-1)t^{\{r-1\}}$ A_{cris} = $t \cdot t^{\{r-1\}}$ A_{cris}.
 - (e) Deduce that $I^{[r]} = I(r)$.

Exercise 3. This exercise is used in studying congruences between Galois representations. In this exercise you will show that for every r there exists λ such that for all $m > \lambda$

$$A_{cris} \cap p^m t^{-r} A_{cris} \subset \sum_{i+j=m-\lambda} p^i I^{[j]} A_{cris}$$

You may assume that $A_{cris} / I^{[r]} A_{cris}$ has no *p*-torsion.

- (1) Let $c_n = \frac{p^{q(n+r)}q(n+r)!}{p^{q(n)}q(n)!}$. Show that $\lambda = -\min(n v_p(c_n))$ is a nonnegative integer. (2) Show that if $a = \sum_{n \ge 0} a_n t^{\{r\}}$ then $t^r a = \sum_{n \ge 0} a_n c_n t^{\{n+r\}}$. (3) Suppose $a = \sum_{n \ge 0} a_n t^{\{r\}} \in A_{cris} \cap p^m t^{-r} A_{cris}$. Such a power series representation is not unique,

and this subpart will show by induction that one can arrange the power series such that whenever $0 \leq n \leq m - \lambda$ we have $a_n \in p^{m-\lambda-n}$ W(R) and $p^m \mid a_n c_n$.

- (a) Show that we may write $t^r a = p^m \sum_{n\geq 0} b_n t^{\{n+r\}} \in p^m A_{cris}$. [Hint: Look modulo $I^{[r]} A_{cris}$.] (b) Show that $a_0c_0 p^m b_0 \in p^{v_p(c_0)}I^{[1]} A_{cris}$ and deduce the base case of the induction. [Hint: Look modulo $I^{[r+1]} A_{cris}$.]
- (c) Show the inductive step by repeating the argument from the base case for

$$\sum_{n \ge k} a_n c_n t^{\{n+r\}} = p^m \left(\sum_{n \ge 0} b_n t^{\{n+r\}} - \sum_{n=0}^{k-1} \frac{a_n c_n}{p^m} t^{\{n+r\}} \right)$$

(d) Deduce the main statement.

3. FROBENIUS EIGENSPACES ON B_{cris}

This rather long but computational exercise is used in studying analytically varying p-adic Galois representations.

Exercise 4. For $\varepsilon \in (0,1)$ let $A_{cris}(\varepsilon T,T]$ be the set of power series in $A_{cris}[T,T^{-1}]$ of the form $\sum_{n \in \mathbb{Z}} a_n T^n$ such that $\lim_{n \to \infty} |a_n| e^{-n} = 0$. Here $|a_n| e^{-n}$ is the nodic norm

such that $\lim_{n \to \infty} |a_n| \varepsilon^{-n} = 0$. Here $|\cdot|$ on B^+_{cris} is the *p*-adic norm.

- (1) $A_{cris}\langle \varepsilon T, T]$.
 - (a) Show that $A_{cris}\langle \varepsilon T, T]$ is a ring.
 - (b) If $x \in \mathbb{R}$ such that $v_{\mathbb{R}}(x) > 0$ show that

$$F(x,T) := \sum_{n \in \mathbb{Z}} \varphi^n([x]) T^n \in \mathcal{A}_{\mathrm{cris}} \langle \varepsilon T, T \rfloor$$

for any $\varepsilon \in (0, 1)$.

- (c) Show that if $f \in A_{cris}(\varepsilon T, T]$ then $f(\lambda)$ converges whenever $|\lambda^{-1}| < 1 < |\lambda| < \varepsilon^{-1}$. Deduce that $F(x, p^{-1})$ converges for all $x \in \mathfrak{m}_{\mathbb{R}}$.
- (d) Show that if $x \in \mathcal{O}_{\mathbb{C}_p}$ such that $v_p(x) > 0$ then $\varphi(F(\tilde{x}, p^{-1})) = pF(\tilde{x}, p^{-1})$ and deduce that $F(x, p^{-1}) \in \mathcal{B}_{\mathrm{cris}}^{+,\varphi=p}$. Denote by L the closure inside $\mathcal{B}_{\mathrm{cris}}^{+,\varphi=p}$ of $\{F(\tilde{x}, p^{-1}) | x \in \mathcal{O}_{\mathbb{C}_p}, v_p(x) > 0\}$.
- (2) $B_{cris}^{+,\varphi=p}$. Assume p > 2. For $s \in \mathcal{O}_{\mathbb{C}_p}$ we will write $\tilde{s} = (s, s^{1/p}, \ldots)$ a lift to R.
 - (a) Show that $\operatorname{Fil}^1 \operatorname{B}_{\operatorname{cris}}^{+,\varphi=p} = \mathbb{Q}_p \cdot t$. [Hint: use the fundamental exact sequence.]
 - (b) Let $x \in \mathbf{R}$.

(i) If $v_{\rm R}(x) > 1/(p-1)$ show that

$$\theta(F(x, p^{-1})) \equiv x^{(0)} \pmod{p^{pv_{\mathbf{R}}(x)-1}}$$

(ii) If
$$v_{\rm R}(x) < 1/(p-1)$$
 show that

$$\theta(p^{-1}F(\widetilde{p}x, p^{-1})) \equiv x^{(0)} \pmod{p^{p^{-1}(v_{\mathrm{R}}(x)+1)}}$$

- (c) Let $u \in \mathbb{C}_p$ such that $v_p(u) \leq 1/(p-1)$ and let s be a root of $x^p + px pu = 0$. (i) Show that $v_p(s) = p^{-1}(v_p(u) + 1)$.
 - (i) If moreover $v_p(u) \ge 1/(2(p-1))$ then for s as above we have

$$\theta(F(\widetilde{s}, p^{-1})) \equiv u \pmod{p}$$

- (d) Let $u \in \mathcal{O}_{\mathbb{C}_p}$ be a lift of a nonzero element of $\mathcal{O}_{\mathbb{C}_p}/(p)$ such that $v_p(u) > 1/(p-1)$. Construct a sequence $u_n \in \mathbb{C}_p$ such that $u_0 = u$ and $u_{n+1} = u_n \theta(F(\widetilde{u_n}, p^{-1}))$.
 - (i) Show that $v_p(u_n)$ is increasing with $\lim_{n\to\infty} v_p(u_n) = \infty$.
 - (ii) Deduce that for $n \gg 0$ (for which $v_p(u_n) \ge 1$) one has $u \equiv \sum_{k=0}^n \theta(F(u_k, p^{-1})) \pmod{p}$.
- (e) Let $u \in \mathcal{O}_{\mathbb{C}_p}$ be a lift of a nonzero element of $\mathcal{O}_{\mathbb{C}_p}/(p)$ such that $v_p(u) < 1/(p-1)$. Construct a sequence $u_n \in \mathbb{C}_p$ such that $u_0 = u$ and $u_{n+1} = u_n - \theta(p^{-1}F(\widetilde{pu_n}, p^{-1}))$.
 - (i) Show that $v_p(u_n)$ is increasing with $\lim_{n \to \infty} v_p(u_n) = 1/(p-1)$.
 - (ii) For n >> 0 (such that $v_p(u_n) > 1/(2(p-1))$ show that

$$u \equiv \theta(F(\widetilde{s}, p^{-1})) + \sum_{k=0}^{n} \theta(p^{-1}F(\widetilde{pu_k}, p^{-1}))$$

where s is obtained from u_{n+1} which satisfies $1/(p-1) > v_p(u_{n+1}) > 1/(2(p-1))$. (f) See part 1d for the definition of L.

- (i) Show that the map $\theta: L \cap \theta^{-1}(\mathcal{O}_{\mathbb{C}_p}) \to \mathcal{O}_{\mathbb{C}_p}/(p)$ is surjective.
- (ii) Deduce that the map $\theta: L \to \mathbb{C}_p$ is surjective.
- (g) We now show that $L = B_{cris}^{+,\varphi=p}$.
 - (i) Let $h \in L$ such that $\theta(h) = 1 \in \mathbb{C}_p$. Show that h cannot be $G_{\mathbb{Q}_p}$ -invariant. Let $g \in G_{\mathbb{Q}_p}$ such that $g(h) \neq h$.
 - (ii) Show that $g(h) h \in \operatorname{Fil}^1 \operatorname{B}_{\operatorname{cris}}^{+,\varphi=p}$.
 - (iii) Deduce that $\mathbb{Q}_p \cdot t \subset L$.
 - (iv) For $x \in B^{+,\varphi=p}_{cris}$ show there exists $y \in L$ such that $x y \in \ker \theta$.
 - (v) Deduce there exists $z \in B_{cris}^{+,\varphi=1} = \mathbb{Q}_p$ such that x y = tz and thus $x \in L$.