MATH 162B
PROBLEM SET 4

ANDREI JORZA

This problem set has several sections, and some definitions.

CONTENTS
1. Divided powers 1
2. Towards the fundamental sequence for Be,is 2
3. Frobenius eigenspaces on Bis 2

1. DIVIDED POWERS

Definition 1 (Divided powers). Divided powers are a device which allows one to make sense of 2™ /n! even
in positive characteristic.
Let A be a commutative ring and I and ideal of A. A divided power structure (a PD structure, for

puissances divisées) on I is a collection of maps v; : I — A for ¢ > 0 such that

(i) For all z € I we have yo(x) =1, y1(z) = = and v;(x) € I for i > 2.

(ii) For all z,y € I we have

m@+y) = Y 7))
i+j=n

(iii) For A € A and = € I we have v,(Az) = A"y, (z).

(iv) For x € I we have

wtarse) = (57 Jristo)
(v) For x € I we have

_ (pg)! .
'Vp(’yq(x)) = p!(q!)p'qu( )

In this case we say that (A, I,v) is a PD ring.

Exercise 1. (1) Show that nly,(x) = 2™ for x € I and n > 1 and deduce that every ideal of a Q-algebra
has a unique PD structure.

(2) Let K/Q), be a finite extension, let Ok be the ring of integers and 7 be a uniformizer. Let e = ek q,

be the ramification index in which case vk (p) = e where vk (mx) = 1. Show that the maximal ideal
of Ok has a PD structure if and only if e < p — 1.

(3) Let (A,1,v) be a PD ring such that [ is principal. Show that for any A-algebra B the ideal IB has
a PD structure which restricts to v on I C IB.
(4) Let k be a ring of characteristic 2 and let
A=Elxy,...,x6)/(22,..., 22, 2120 + T34 + T526)
Show that the ideal I = (x1,...,26) has no PD structure as follows:
(a) Show that vo(z;z;) = 0.
(b) Show that v5(z122 + z324) = 0 = z1292324 and conclude that no v can exist.
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2. TOWARDS THE FUNDAMENTAL SEQUENCE FOR Bgis

Exercise 2. This exercise feeds into the proof of the fundamental exact sequence for B.,is. For a positive
integer n let n = q(n)(p — 1) + r(n) where 0 < r(n) < p — 1 and write

n T (n tp_l
Hn} e )Wn)( ) >
Define Ky = W(kk)[1/p] and A, C Ky[t] be the set of power series that can be written as

Z ant{n}

n>0

where a,, € W(kg) converge p-adically to 0. Recall that we have defined I"l A = N (Fil” Agyis).
(1) Se and A..
(a) Show that A, is a ¢-stable and G-stable subring of Ky [t].
(b) Show that [e] — 1 € A..
(c¢) Show that S. defined as W(kx)[[e] — 1] is a Gk-stable and ¢-stable sub-W (kg )-algebra of A..
(2) 1[7 Acris-
(a) Write I(r) = {Z ant'™a, € W(R),a, — 0 p-adically}. Show that I(r) C 1",
n>r
(b) Show that 1'% c I(0).
(c) fa= Z ant!™ € 1" show that a,_,t{r=1 € 117,
n>r—1
(d) Show that a,_; € I W(R) and deduce that a,_1#{"=1 € ([g] = D)tlr—1 Ay = -t 171 A
(e) Deduce that Il = I(r).

Exercise 3. This exercise is used in studying congruences between Galois representations. In this exercise
you will show that for every r there exists A such that for all m > A\

Acris mpmt_r Acris C Z pZI[J] Acris
i+j=m—X\
You may assume that Ay /1 ["l A¢yis has no p-torsion.
P g(n + 1)
p"Mg(n)!
(2) Show that if a = Z ant!™} then t"a = Z apcntintrl
n>0 n>0

(3) Suppose a = Zant{r} € Aqis NPt " Acis. Such a power series representation is not unique,

n>0
and this subpart will show by induction that one can arrange the power series such that whenever

0<n<m-—\wehave a, € p"* " W(R) and p™ | a,c,.
(a) Show that we may write t"a = p™ ano b, tintrh € p™ A s, [Hint: Look modulo T A 4.
(b) Show that agco —p™bgy € pr(c0) TM A is and deduce the base case of the induction. [Hint: Look
modulo T+ A ]
(¢) Show the inductive step by repeating the argument from the base case for

(1) Let ¢,, = . Show that A = —min(n — v,(cy,)) is a nonnegative integer.

k—1
Z anentit Tt = pm Z bttt Z %t{n—&-r}
n>k n>0 n=0 p

(d) Deduce the main statement.

3. FROBENIUS EIGENSPACES ON B yis

This rather long but computational exercise is used in studying analytically varying p-adic Galois repre-
sentations.



Exercise 4. For ¢ € (0,1) let As(eT,T] be the set of power series in Aqs[T, T~1] of the form Z a,T"
ne”Z

is the p-adic norm.

such that lim |a,|e~™ = 0. Here |- | on B,
n—oo

(1) Acyis(eT,T7.
(a) Show that Acys(eT,T] is a ring.
(b) If z € R such that UR( ) > 0 show that

Z " ([2])T" € Acris(eT, T
neL
for any € € (0,1).
(c) Show that if f € Acus(eT,T] then f(\) converges whenever [A7!| < 1 < |\ < 7. Deduce
that F(z,p~!) converges for all z € mg.
(d) Show that if € O, such that v,(z) > 0 then ¢(F(Z,p~')) = pF(Z,p~"') and deduce that
F(z,p~') € BL:#=P. Denote by L the closure inside BY:*=? of {F(Z,p~!)|z € Oc,,vp(x) > 0}.

Cris cris

(2) BL:¥7P. Assume p > 2. For s € O, we will write 3 = (s,s'/?,...) alift to R.
(a) Show that Fil' B];#=" = Q, - t. [Hint: use the fundamental exact sequence.]
(b) Let z € R.

(i) for(z) > 1/(p — 1) show that
O(F(z,p~) =2 (mod prn=)
(ii) If vr(z) < 1/(p — 1) show that
O(p ' F(pa,p ) =2 (mod pp (wr(@)+1)

(c) Let u € C, such that v,(u) < 1/(p —1) and let s be a root of z¥ + pz — pu = 0.
(i) Show that v,(s) = p~*(v,(u) + 1).
(if) If moreover v,(u) > 1/(2(p — 1)) then for s as above we have
O(F(E,p~ ")) =u (mod p)
(d) Let u € Oc, be a lift of a nonzero element of Oc,/(p) such that vp(u) >1/(p —1). Construct
a sequence u,, € C, such that up = u and u,1 = u, — 0(F(u,,p™1)).
(i) Show that vp(uy,) is increasing with lim v, (u,) = oc.
n— oo
(ii) Deduce that for n >> 0 (for which v,(u,) > 1) one has u = Z O(F (up,p~ ")) (mod p).
k=0
(e) Let u € Oc, be a lift of a nonzero element of Oc,/(p) such that v,(u) < 1/(p —1). Construct
a sequence u,, € C, such that up = u and w11 = u, — 0(p~ F(pu,,p~1)).
(i) Show that v, (u,) is increasing with li_>m vp(uy) =1/(p—1).
(ii) For n >> 0 (such that v,(u,) > 1/(2( — 1)) show that

where s is obtained from w11 Wthh satisfies 1/(p — 1) > vp(uny1) > 1/(2(p — 1)).
(f) See part 1d for the definition of L.
(i) Show that the map 6 : LN~ (Oc,) = Oc,/(p) is surjective.
(ii) Deduce that the map 6 : L — C,, is surjective.
(g) We now show that L = B :¥=7,

Cris

Let h € L such that 8(h) =1 € C,. Show that h cannot be Gg_-invariant. Let g € G
P Qp Qp
such that g(h) # h.
ii) Show that g(h) — h € Fil' BJ:#=P.

( ) Cris

(iii) Deduce that Q, -t C L.

(iv) For x € BL:#=? show there exists y € L such that x — y € ker§.
)

Cris

(v) Deduce there exists z € B2~ b= = Q,, such that z —y =tz and thus x € L.

Cris
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