MATH 162B PROBLEM SET 4

ANDREI JORZA

This problem set has several sections, and some definitions.

Contents

1. Divided powers

1
2. Towards the fundamental sequence for $\mathrm{B}_{\text {cris }}$
3. Frobenius eigenspaces on $B_{\text {cris }}$

1. DIVIDED POWERS

Definition 1 (Divided powers). Divided powers are a device which allows one to make sense of x^{n} / n ! even in positive characteristic.

Let A be a commutative ring and I and ideal of A. A divided power structure (a PD structure, for puissances divisées) on I is a collection of maps $\gamma_{i}: I \rightarrow A$ for $i \geq 0$ such that
(i) For all $x \in I$ we have $\gamma_{0}(x)=1, \gamma_{1}(x)=x$ and $\gamma_{i}(x) \in I$ for $i \geq 2$.
(ii) For all $x, y \in I$ we have

$$
\gamma_{n}(x+y)=\sum_{i+j=n} \gamma_{i}(x) \gamma_{j}(y)
$$

(iii) For $\lambda \in A$ and $x \in I$ we have $\gamma_{n}(\lambda x)=\lambda^{n} \gamma_{n}(x)$.
(iv) For $x \in I$ we have

$$
\gamma_{i}(x) \gamma_{j}(x)=\binom{i+j}{i} \gamma_{i+j}(x)
$$

(v) For $x \in I$ we have

$$
\gamma_{p}\left(\gamma_{q}(x)\right)=\frac{(p q)!}{p!(q!)^{p}} \gamma_{p q}(x)
$$

In this case we say that (A, I, γ) is a PD ring.
Exercise 1. (1) Show that $n!\gamma_{n}(x)=x^{n}$ for $x \in I$ and $n \geq 1$ and deduce that every ideal of a \mathbb{Q}-algebra has a unique PD structure.
(2) Let K / \mathbb{Q}_{p} be a finite extension, let \mathcal{O}_{K} be the ring of integers and π_{K} be a uniformizer. Let $e=e_{K / \mathbb{Q}_{p}}$ be the ramification index in which case $v_{K}(p)=e$ where $v_{K}\left(\pi_{K}\right)=1$. Show that the maximal ideal of \mathcal{O}_{K} has a PD structure if and only if $e \leq p-1$.
(3) Let (A, I, γ) be a PD ring such that I is principal. Show that for any A-algebra B the ideal $I B$ has a PD structure which restricts to γ on $I \subset I B$.
(4) Let k be a ring of characteristic 2 and let

$$
A=k\left[x_{1}, \ldots, x_{6}\right] /\left(x_{1}^{2}, \ldots, x_{6}^{2}, x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}\right)
$$

Show that the ideal $I=\left(x_{1}, \ldots, x_{6}\right)$ has no PD structure as follows:
(a) Show that $\gamma_{2}\left(x_{i} x_{j}\right)=0$.
(b) Show that $\gamma_{2}\left(x_{1} x_{2}+x_{3} x_{4}\right)=0=x_{1} x_{2} x_{3} x_{4}$ and conclude that no γ can exist.

2. Towards the fundamental sequence for $\mathrm{B}_{\text {cris }}$

Exercise 2. This exercise feeds into the proof of the fundamental exact sequence for $\mathrm{B}_{\text {cris }}$. For a positive integer n let $n=q(n)(p-1)+r(n)$ where $0 \leq r(n)<p-1$ and write

$$
t^{\{n\}}=t^{r(n)} \gamma_{q(n)}\left(\frac{t^{p-1}}{p}\right)
$$

Define $K_{0}=\mathrm{W}\left(k_{K}\right)[1 / p]$ and $\Lambda_{\varepsilon} \subset K_{0} \llbracket t \rrbracket$ be the set of power series that can be written as

$$
\sum_{n \geq 0} a_{n} t^{\{n\}}
$$

where $a_{n} \in \mathrm{~W}\left(k_{K}\right)$ converge p-adically to 0 . Recall that we have defined $I^{[r]} \mathrm{A}_{\text {cris }}=\cap \varphi^{-n}\left(\mathrm{Fil}^{r} \mathrm{~A}_{\text {cris }}\right)$.
(1) S_{ε} and Λ_{ε}.
(a) Show that Λ_{ε} is a φ-stable and G_{K}-stable subring of $K_{0} \llbracket t \rrbracket$.
(b) Show that $[\varepsilon]-1 \in \Lambda_{\varepsilon}$.
(c) Show that S_{ε} defined as $\mathrm{W}\left(k_{K}\right) \llbracket[\varepsilon]-1 \rrbracket$ is a G_{K}-stable and φ-stable sub-W $\left(k_{K}\right)$-algebra of Λ_{ε}. (2) $I^{[r]} \mathrm{A}_{\text {cris. }}$.
(a) Write $I(r)=\left\{\sum_{n \geq r} a_{n} t^{\{n\}} \mid a_{n} \in \mathrm{~W}(\mathrm{R}), a_{n} \rightarrow 0 p\right.$-adically $\}$. Show that $I(r) \subset I^{[r]}$.
(b) Show that $I^{[0]} \subset I(0)$.
(c) If $a=\sum_{n \geq r-1} a_{n} t^{\{n\}} \in I^{[r]}$ show that $a_{r-1} t^{\{r-1\}} \in I^{[r]}$.
(d) Show that $a_{r-1} \in I^{[1]} \mathrm{W}(\mathrm{R})$ and deduce that $a_{r-1} t^{\{r-1\}} \in([\varepsilon]-1) t^{\{r-1\}} \mathrm{A}_{\text {cris }}=t \cdot t^{\{r-1\}} \mathrm{A}_{\text {cris }}$.
(e) Deduce that $I^{[r]}=I(r)$.

Exercise 3. This exercise is used in studying congruences between Galois representations. In this exercise you will show that for every r there exists λ such that for all $m \geq \lambda$

$$
\mathrm{A}_{\text {cris }} \cap p^{m} t^{-r} \mathrm{~A}_{\text {cris }} \subset \sum_{i+j=m-\lambda} p^{i} I^{[j]} \mathrm{A}_{\text {cris }}
$$

You may assume that $\mathrm{A}_{\text {cris }} / I^{[r]} \mathrm{A}_{\text {cris }}$ has no p-torsion.
(1) Let $c_{n}=\frac{\left.p^{q(n+r}\right) q(n+r)!}{p^{q(n)} q(n)!}$. Show that $\lambda=-\min \left(n-v_{p}\left(c_{n}\right)\right)$ is a nonnegative integer.
(2) Show that if $a=\sum_{n \geq 0} a_{n} t^{\{r\}}$ then $t^{r} a=\sum_{n \geq 0} a_{n} c_{n} t^{\{n+r\}}$.
(3) Suppose $a=\sum_{n \geq 0} a_{n} t^{\{r\}} \in \mathrm{A}_{\text {cris }} \cap p^{m} t^{-r} \mathrm{~A}_{\text {cris }}$. Such a power series representation is not unique, and this subpart will show by induction that one can arrange the power series such that whenever $0 \leq n \leq m-\lambda$ we have $a_{n} \in p^{m-\lambda-n} \mathrm{~W}(\mathrm{R})$ and $p^{m} \mid a_{n} c_{n}$.
(a) Show that we may write $t^{r} a=p^{m} \sum_{n \geq 0} b_{n} t^{\{n+r\}} \in p^{m} \mathrm{~A}_{\text {cris }}$. [Hint: Look modulo $I^{[r]} \mathrm{A}_{\text {cris }}$.]
(b) Show that $a_{0} c_{0}-p^{m} b_{0} \in p^{v_{p}\left(c_{0}\right)} I^{[1]} \mathrm{A}_{\text {cris }}$ and deduce the base case of the induction. [Hint: Look modulo $I^{[r+1]} \mathrm{A}_{\text {cris }}$.]
(c) Show the inductive step by repeating the argument from the base case for

$$
\sum_{n \geq k} a_{n} c_{n} t^{\{n+r\}}=p^{m}\left(\sum_{n \geq 0} b_{n} t^{\{n+r\}}-\sum_{n=0}^{k-1} \frac{a_{n} c_{n}}{p^{m}} t^{\{n+r\}}\right)
$$

(d) Deduce the main statement.

3. Frobenius eigenspaces on $\mathrm{B}_{\text {cris }}$

This rather long but computational exercise is used in studying analytically varying p-adic Galois representations.

Exercise 4. For $\varepsilon \in(0,1)$ let $\mathrm{A}_{\text {cris }}\left\langle\varepsilon T, T \rrbracket\right.$ be the set of power series in $\mathrm{A}_{\text {cris }} \llbracket T, T^{-1} \rrbracket$ of the form $\sum_{n \in \mathbb{Z}} a_{n} T^{n}$ such that $\lim _{n \rightarrow \infty}\left|a_{n}\right| \varepsilon^{-n}=0$. Here $|\cdot|$ on $\mathrm{B}_{\text {cris }}^{+}$is the p-adic norm.
(1) $\mathrm{A}_{\text {cris }}\langle\varepsilon T, T \rrbracket$.
(a) Show that $\mathrm{A}_{\text {cris }}\langle\varepsilon T, T \rrbracket$ is a ring.
(b) If $x \in \mathrm{R}$ such that $v_{\mathrm{R}}(x)>0$ show that

$$
F(x, T):=\sum_{n \in \mathbb{Z}} \varphi^{n}([x]) T^{n} \in \mathrm{~A}_{\text {cris }}\langle\varepsilon T, T \rrbracket
$$

for any $\varepsilon \in(0,1)$.
(c) Show that if $f \in \mathrm{~A}_{\text {cris }}\langle\varepsilon T, T \rrbracket$ then $f(\lambda)$ converges whenever $| \lambda^{-1}\left|<1<|\lambda|<\varepsilon^{-1}\right.$. Deduce that $F\left(x, p^{-1}\right)$ converges for all $x \in \mathfrak{m}_{\mathrm{R}}$.
(d) Show that if $x \in \mathcal{O}_{\mathbb{C}_{p}}$ such that $v_{p}(x)>0$ then $\varphi\left(F\left(\widetilde{x}, p^{-1}\right)\right)=p F\left(\widetilde{x}, p^{-1}\right)$ and deduce that $F\left(x, p^{-1}\right) \in \mathrm{B}_{\text {cris }}^{+, \varphi=p}$. Denote by L the closure inside $\mathrm{B}_{\text {cris }}^{+, \varphi=p}$ of $\left\{F\left(\widetilde{x}, p^{-1}\right) \mid x \in \mathcal{O}_{\mathbb{C}_{p}}, v_{p}(x)>0\right\}$.
(2) $\mathrm{B}_{\text {cris }}^{+, \varphi=p}$. Assume $p>2$. For $s \in \mathcal{O}_{\mathbb{C}_{p}}$ we will write $\widetilde{s}=\left(s, s^{1 / p}, \ldots\right)$ a lift to R.
(a) Show that $\mathrm{Fil}^{1} \mathrm{~B}_{\text {cris }}^{+, \varphi=p}=\mathbb{Q}_{p} \cdot t$. [Hint: use the fundamental exact sequence.]
(b) Let $x \in \mathrm{R}$.
(i) If $v_{\mathrm{R}}(x)>1 /(p-1)$ show that

$$
\theta\left(F\left(x, p^{-1}\right)\right) \equiv x^{(0)} \quad\left(\bmod p^{p v_{\mathrm{R}}(x)-1}\right)
$$

(ii) If $v_{\mathrm{R}}(x)<1 /(p-1)$ show that

$$
\theta\left(p^{-1} F\left(\widetilde{p} x, p^{-1}\right)\right) \equiv x^{(0)} \quad\left(\bmod p^{p^{-1}\left(v_{\mathrm{R}}(x)+1\right)}\right)
$$

(c) Let $u \in \mathbb{C}_{p}$ such that $v_{p}(u) \leq 1 /(p-1)$ and let s be a root of $x^{p}+p x-p u=0$.
(i) Show that $v_{p}(s)=p^{-1}\left(v_{p}(u)+1\right)$.
(ii) If moreover $v_{p}(u) \geq 1 /(2(p-1))$ then for s as above we have

$$
\theta\left(F\left(\widetilde{s}, p^{-1}\right)\right) \equiv u \quad(\bmod p)
$$

(d) Let $u \in \mathcal{O}_{\mathbb{C}_{p}}$ be a lift of a nonzero element of $\mathcal{O}_{\mathbb{C}_{p}} /(p)$ such that $v_{p}(u)>1 /(p-1)$. Construct a sequence $u_{n} \in \mathbb{C}_{p}$ such that $u_{0}=u$ and $u_{n+1}=u_{n}-\theta\left(F\left(\widetilde{u_{n}}, p^{-1}\right)\right)$.
(i) Show that $v_{p}\left(u_{n}\right)$ is increasing with $\lim _{n \rightarrow \infty} v_{p}\left(u_{n}\right)=\infty$.
(ii) Deduce that for $n \gg 0$ (for which $\left.v_{p}\left(u_{n}\right) \geq 1\right)$ one has $u \equiv \sum_{k=0}^{n} \theta\left(F\left(u_{k}, p^{-1}\right)\right)(\bmod p)$.
(e) Let $u \in \mathcal{O}_{\mathbb{C}_{p}}$ be a lift of a nonzero element of $\mathcal{O}_{\mathbb{C}_{p}} /(p)$ such that $v_{p}(u)<1 /(p-1)$. Construct a sequence $u_{n} \in \mathbb{C}_{p}$ such that $u_{0}=u$ and $u_{n+1}=u_{n}-\theta\left(p^{-1} F\left(\widetilde{p} u_{n}, p^{-1}\right)\right)$.
(i) Show that $v_{p}\left(u_{n}\right)$ is increasing with $\lim _{n \rightarrow \infty} v_{p}\left(u_{n}\right)=1 /(p-1)$.
(ii) For $n \gg 0$ (such that $v_{p}\left(u_{n}\right)>1 /(2(p-1))$ show that

$$
u \equiv \theta\left(F\left(\widetilde{s}, p^{-1}\right)\right)+\sum_{k=0}^{n} \theta\left(p^{-1} F\left(\widetilde{p u_{k}}, p^{-1}\right)\right)
$$

where s is obtained from u_{n+1} which satisfies $1 /(p-1)>v_{p}\left(u_{n+1}\right)>1 /(2(p-1))$.
(f) See part 1 d for the definition of L.
(i) Show that the map $\theta: L \cap \theta^{-1}\left(\mathcal{O}_{\mathbb{C}_{p}}\right) \rightarrow \mathcal{O}_{\mathbb{C}_{p}} /(p)$ is surjective.
(ii) Deduce that the map $\theta: L \rightarrow \mathbb{C}_{p}$ is surjective.
(g) We now show that $L=\mathrm{B}_{\text {cris }}^{+, \varphi=p}$.
(i) Let $h \in L$ such that $\theta(h)=1 \in \mathbb{C}_{p}$. Show that h cannot be $G_{\mathbb{Q}_{p}}$-invariant. Let $g \in G_{\mathbb{Q}_{p}}$ such that $g(h) \neq h$.
(ii) Show that $g(h)-h \in \mathrm{Fil}^{1} \mathrm{~B}_{\text {cris }}^{+, \varphi=p}$.
(iii) Deduce that $\mathbb{Q}_{p} \cdot t \subset L$.
(iv) For $x \in \mathrm{~B}_{\text {cris }}^{+, \varphi=p}$ show there exists $y \in L$ such that $x-y \in \operatorname{ker} \theta$.
(v) Deduce there exists $z \in \mathrm{~B}_{\text {cris }}^{+, \varphi=1}=\mathbb{Q}_{p}$ such that $x-y=t z$ and thus $x \in L$.

