MATH 162B PROBLEM SET 5

ANDREI JORZA

Exercise 1. This exercise will give an example ${ }^{1}$ of an element in $\mathrm{Fil}^{0} \mathrm{~B}_{\text {cris }}-\mathrm{B}_{\text {cris }}^{+}$.
(1) Let $y=\frac{\left[\varepsilon^{1 / p}\right]-1}{\left[\varepsilon^{1 / p^{2}}\right]-1}$. Show that $y \in \mathrm{~B}_{\text {cris }}$ and $\frac{1}{y} \in \mathrm{~B}_{\mathrm{dR}}^{+}$.
(2) Show that

$$
\frac{1}{y}=\frac{\varphi(y)\left(\left[\varepsilon^{1 / p^{2}}\right]-1\right)}{[\varepsilon]-1} \in \mathrm{~B}_{\mathrm{cris}}
$$

(3) Show that $\frac{1}{\varphi(y)} \notin \mathrm{B}_{\mathrm{dR}}^{+}$and deduce that $\frac{1}{y} \in \mathrm{Fil}^{0} \mathrm{~B}_{\text {cris }}-\mathrm{B}_{\text {cris }}^{+}$.

Exercise 2. Let $p \equiv 3(\bmod 4)$ be a prime and let $\operatorname{Fil}^{-1} D=D=\mathbb{Q}_{p} e_{1} \oplus \mathbb{Q}_{p} e_{2} \supset \operatorname{Fil}^{0} D=\mathbb{Q}_{p} e_{1} \supset \operatorname{Fil}^{1} D=$ 0 be a filtered φ-module with $\varphi\left(e_{1}\right)=-p^{-1} e_{2}$ and $\varphi\left(e_{2}\right)=e_{1}$.
(1) Show that D is irreducible.
(2) Show that $K=\mathbb{Q}_{p}(\sqrt{-1})$ is unramified over \mathbb{Q}_{p}, of degree 2 .
(3) Show that $\widetilde{D}:=D \otimes_{\mathbb{Q}_{p}}\left(K \otimes_{\mathbb{Q}_{p}} K\right)$ is reducible.
(4) If $D=\mathrm{D}_{\text {cris }}(V)$ for a crystalline representation V show that $\widetilde{D}=\mathrm{D}_{\text {cris, } K}\left(V \otimes_{\mathbb{Q}_{p}} K\right)$.

Exercise 3. $\operatorname{Let}^{2} x_{n}=\frac{\omega^{p^{n}-1}}{\left(p^{n}-1\right)!}$.
(1) Show that $\lim _{n \rightarrow \infty} \omega x_{n}=0$ in $\mathrm{B}_{\text {cris }}^{+}$but $\left(x_{n}\right)$ does not converge in $\mathrm{B}_{\text {cris }}^{+}$.
(2) Show that $\lim _{n \rightarrow \infty} x_{n}=0$ in $\mathrm{B}_{\text {cris }}$, and thus that the topology on $\mathrm{B}_{\text {cris }}^{+}$is not the subspace topology from $\mathrm{B}_{\text {cris }}$.
Exercise 4. Let K / \mathbb{Q}_{p} be a finite extension and let ϖ_{K} be a uniformizer. Let $\frac{\varpi}{}=\left(\varpi_{K}, \varpi_{K}^{1 / p}, \ldots\right)$ and let
 Define:

- $\varphi\left(\sum a_{n} u^{n}\right)=\sum \sigma_{K_{0}}\left(a_{n}\right) u^{p n}$,
- $N=-u \frac{d}{d u}$,
- $\mathrm{Fil}^{i} S=\left\{\left.\sum_{n \geq i} a_{n} \frac{E(u)^{n}}{n!} \right\rvert\, a_{n} \in \mathrm{~W}\left(k_{K}\right), a_{n} \rightarrow 0\right\}$.
(1) Show that $N \varphi=p \varphi N$.
(2) Show that $\varphi\left(\mathrm{Fil}^{i} S\right) \subset p^{i} S$ for $0 \leq i \leq p-1$.
(3) Show that $p^{-1} \varphi(E(u)) \in S^{\times}$.

Exercise 5. Recall the notation from Exercise 4. Let $\widehat{\mathrm{A}_{\mathrm{st}}}={\underset{饣}{m}}_{\lim _{m}}\left(\mathrm{~A}_{\text {cris }}\left[\frac{X^{n}}{n!}\right]_{n \geq 1}\right) /\left(p^{m}\right)$. Define:

- $\varphi\left(\sum a_{n} X^{n}\right)=\sum \varphi\left(a_{n}\right)\left((1+X)^{p}-1\right)^{n}$,

[^0]${ }^{1}$ I learned about this example from Laurent Berger.
${ }^{2}$ example due to Pierre Colmez

- $N=(1+X) \frac{d}{d X}$,
- for $g \in G_{K}$ let $g\left(\sum a_{n} X^{n}\right)=\sum g\left(a_{n}\right) g(X)^{n}$ where $g(X)=[\varepsilon]^{c(g)}(1+X)-1$,
- Fil $^{i} \widehat{\mathrm{~A}_{\mathrm{st}}}=\left\{\left.\sum_{n \geq 0} a_{n} \frac{X^{n}}{n!} \in \widehat{\mathrm{A}_{\mathrm{st}}} \right\rvert\, a_{n} \in \operatorname{Fil}^{i-n} \mathrm{~A}_{\text {cris }}, a_{n} \rightarrow 0\right\}$.
(1) Show that the above formula gives an action of G_{K} on $\widehat{\mathrm{A}_{\mathrm{st}}}$.
(2) Show that $N \varphi=p \varphi N$.
(3) Show that $\frac{[\varpi]}{1+X} \in \widehat{A_{\mathrm{st}}}$ and $u \mapsto \frac{[\underline{\varpi}]}{1+X}$ gives a map $S \rightarrow \widehat{\mathrm{~A}_{\mathrm{st}}}$.
(4) Show that this map $S \rightarrow \widehat{A_{\text {st }}}$ respects φ, N and filtrations.
(5) Show that the image of S in $\widehat{\mathrm{A}_{\mathrm{st}}}$ is contained in $\widehat{\mathrm{A}_{\mathrm{st}}}{ }^{G_{K}}$. (Remark: one can show $S \cong \widehat{\mathrm{~A}_{\mathrm{st}}}{ }^{G_{K}}$).

[^0]: Date: due Wednesday, March 14, 2012.

