MATH 162B PROBLEM SET 5

ANDREI JORZA

Exercise 1. This exercise will give an example¹ of an element in $\operatorname{Fil}^{0} B_{\operatorname{cris}} - B_{\operatorname{cris}}^{+}$.

(1) Let $y = \frac{[\varepsilon^{1/p}] - 1}{[\varepsilon^{1/p^2}] - 1}$. Show that $y \in B_{cris}$ and $\frac{1}{y} \in B_{dR}^+$. (2) Show that $(...)([-1/n^2] = 1)$

$$\frac{1}{y} = \frac{\varphi(y)([\varepsilon^{z+y}] - 1)}{[\varepsilon] - 1} \in \mathcal{B}_{cris}$$
(3) Show that $\frac{1}{\varphi(y)} \notin \mathcal{B}_{dR}^+$ and deduce that $\frac{1}{y} \in \operatorname{Fil}^0 \mathcal{B}_{cris} - \mathcal{B}_{cris}^+$.

Exercise 2. Let $p \equiv 3 \pmod{4}$ be a prime and let $\operatorname{Fil}^{-1} D = D = \mathbb{Q}_p e_1 \oplus \mathbb{Q}_p e_2 \supset \operatorname{Fil}^0 D = \mathbb{Q}_p e_1 \supset \operatorname{Fil}^1 D = \mathbb{Q}_p \oplus \mathbb{Q}_p = \mathbb{Q}_p \oplus \mathbb{Q}_p \oplus \mathbb{Q}_p \oplus \mathbb{Q}_p \oplus \mathbb{Q}_p \oplus$ 0 be a filtered φ -module with $\varphi(e_1) = -p^{-1}e_2$ and $\varphi(e_2) = e_1$.

- (1) Show that D is irreducible.
- (2) Show that $K = \mathbb{Q}_p(\sqrt{-1})$ is unramified over \mathbb{Q}_p , of degree 2.
- (3) Show that $D := D \otimes_{\mathbb{Q}_p} (K \otimes_{\mathbb{Q}_p} K)$ is reducible.
- (4) If $D = D_{\operatorname{cris}}(V)$ for a crystalline representation V show that $\widetilde{D} = D_{\operatorname{cris},K}(V \otimes_{\mathbb{Q}_p} K)$.

Exercise 3. Let² $x_n = \frac{\omega^{p^n-1}}{(p^n-1)!}$

- (1) Show that $\lim_{n \to \infty} \omega x_n = 0$ in B^+_{cris} but (x_n) does not converge in B^+_{cris} .
- (2) Show that $\lim_{n \to \infty} x_n = 0$ in B_{cris}, and thus that the topology on B⁺_{cris} is not the subspace topology from B_{cris}.

Exercise 4. Let K/\mathbb{Q}_p be a finite extension and let ϖ_K be a uniformizer. Let $\underline{\varpi} = (\varpi_K, \varpi_K^{1/p}, \ldots)$ and let $g(\underline{\varpi}) = \underline{\varpi}\varepsilon^{c(g)}$. Let E(u) be the minimal polynomial of $\overline{\varpi}_K$ over K_0 . Let $S = \varprojlim_m \left(W(k_K) \left[u, \frac{E(u)^n}{n!} \right]_{n>1} \right) / (p^m)$. Define:

•
$$\varphi(\sum a_n u^n) = \sum \sigma_{K_0}(a_n) u^{pn},$$

• $N = -u \frac{d}{du},$
• $\operatorname{Fil}^i S = \left\{ \sum_{n \ge i} a_n \frac{E(u)^n}{n!} | a_n \in W(k_K), a_n \to 0 \right\}.$

- (1) Show that $N\varphi = p\varphi N$.
- (2) Show that $\varphi(\operatorname{Fil}^i S) \subset p^i S$ for $0 \leq i \leq p-1$.
- (3) Show that $p^{-1}\varphi(E(u)) \in S^{\times}$.

Exercise 5. Recall the notation from Exercise 4. Let $\widehat{A_{st}} = \lim_{m} \left(A_{cris} \left[\frac{X^n}{n!} \right]_{n \ge 1} \right) / (p^m)$. Define: • $\varphi(\sum a_n X^n) = \sum \varphi(a_n)((1+X)^p - 1)^n$,

Date: due Wednesday, March 14, 2012.

¹I learned about this example from Laurent Berger.

²example due to Pierre Colmez

- $N = (1+X)\frac{d}{dX}$, • for $g \in G_K$ let $g(\sum a_n X^n) = \sum g(a_n)g(X)^n$ where $g(X) = [\varepsilon]^{c(g)}(1+X) - 1$, • Fil^{*i*} $\widehat{A_{st}} = \left\{ \sum_{n \ge 0} a_n \frac{X^n}{n!} \in \widehat{A_{st}} | a_n \in \operatorname{Fil}^{i-n} A_{\operatorname{cris}}, a_n \to 0 \right\}.$
- (1) Show that the above formula gives an action of G_K on $\widehat{A_{st}}$.
- (1) Show that $N\varphi = p\varphi N$. (2) Show that $N\varphi = p\varphi N$. (3) Show that $\frac{[\underline{\varpi}]}{1+X} \in \widehat{A_{st}}$ and $u \mapsto \frac{[\underline{\varpi}]}{1+X}$ gives a map $S \to \widehat{A_{st}}$.
- (4) Show that this map $S \to \widehat{A_{st}}$ respects φ , N and filtrations. (5) Show that the image of S in $\widehat{A_{st}}$ is contained in $\widehat{A_{st}}^{G_K}$. (Remark: one can show $S \cong \widehat{A_{st}}^{G_K}$).