MA 1A (SECTION 1) MID-TERM SOLUTIONS

Problem 1. (40 points)
Let $x \neq 1$. For an integer $n \geq 1$ show that $\prod_{k=1}^{n}\left(1+x^{2^{k-1}}\right)=\frac{1-x^{2^{n}}}{1-x}$.
Solution. When $n=1$, L.H.S. $=1+x^{2^{1-1}}=1+x$, and R.H.S. $=\frac{1-x^{2^{1}}}{1-x}=\frac{1-x^{2}}{1-x}=1+x=$ L.H.S. since $x \neq 1$.

Assume that for some $r \in \mathbb{N}, \prod_{k=1}^{r}\left(1+x^{2^{k-1}}\right)=\frac{1-x^{2^{r}}}{1-x}$. When $n=r+1$, L.H.S. $=\prod_{k=1}^{r+1}\left(1+x^{2^{k-1}}\right)=$ $\left(1+x^{2^{r+1-1}}\right) \prod_{k=1}^{r}\left(1+x^{2^{k-1}}\right)=\left(1+x^{2^{r}}\right) \frac{1-x^{2^{r}}}{1-x}=\frac{1^{2}-\left(x^{2^{r}}\right)^{2}}{1-x}=\frac{1-x^{2^{r+1}}}{1-x}=$ R.H.S. Therefore, by induction, $\prod_{k=1}^{n}\left(1+x^{2^{k-1}}\right)=\frac{1-x^{2^{n}}}{1-x}$ for all $n \in \mathbb{N}$.

Problem 2.

(a) (20 points) Show that the limit of a convergent sequence of integers is an integer.
(b) (10 points) Let $\left(x_{n}\right)_{n \geq 1}$ be a convergent sequence of rational numbers. Let q_{n} be the denominator of x_{n} (when written in lowest terms). If the sequence $\left(q_{n}\right)_{n \geq 1}$ is a bounded sequence of integers, show that there exists an integer N such that $N \cdot x_{n}$ is an integer for all $n \geq 1$.
(c) (10 points) Under the assumptions of part (b) deduce that $\lim _{n \rightarrow \infty} x_{n}$ is a rational number.

Solution. (a) Let $\left(a_{n}\right)_{n \geq 1}$ be a convergent sequence of integers. Assume contrary, let the limit be $L \in \mathbb{R} \backslash \mathbb{Z}$. Then for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for all n with $n \geq N$, $\left|a_{n}-L\right|<\epsilon$. In particular, we can pick $\epsilon=\min \{\lceil L\rceil-L, L-\lfloor L\rfloor\}>0$. However, as $a_{n} \in \mathbb{Z}$, by the definition of ceiling and floor function, $\left|a_{n}-L\right| \geq\lceil L\rceil-L$ or $\left|a_{n}-L\right| \geq L-\lfloor L\rfloor$, i.e. $\left|a_{n}-L\right| \geq \epsilon$ for all $n \in \mathbb{N}$, contradiction. Therefore, $L \in \mathbb{Z}$.
(b) Let a bound of $\left(q_{n}\right)_{n \geq 1}$ be $M \in \mathbb{N}$, i.e. $-M \leq q_{n} \leq M$ for all $n \in \mathbb{N}$. If $N=M$!, $q_{n} \mid N$ for all $n \in \mathbb{N}$, and hence, $N \cdot x_{n}$ is an integer for all $n \in \mathbb{N}$.
(c) Let $L=\lim _{n \rightarrow \infty} x_{n}$. Then $N L=\lim _{n \rightarrow \infty} N \cdot x_{n}$, where N is the same as part (b). As $\left(N \cdot x_{n}\right)_{n \geq 1}$ is a convergent sequence of integers, by part (a), NL is an integer. Therefore, $L=\frac{N L}{N}$ is a fraction of integers with $N \neq 0$, i.e. rational.

Problem 3.

(a) (20 points) Is the sequence $\left(x_{n}\right)$ monotonic?
(b) (20 points) Does it converge? If yes, find its limit; if not, show why that is the case.

Solution. (a) For all $x \in\left(0, \frac{\pi}{2}\right), 0<\sin x<x<\frac{\pi}{2}$.
When $n=1, x_{1}=\sin x \in\left(0, \frac{\pi}{2}\right)$. Assume that for some $k \in \mathbb{N}, x_{k} \in\left(0, \frac{\pi}{2}\right)$. When $n=k+1, x_{k+1}=\sin x_{k} \in\left(0, \frac{\pi}{2}\right)$. By induction, $x_{n} \in\left(0, \frac{\pi}{2}\right)$ for all $n \in \mathbb{N}$. As a result, $x_{n+1}=\sin x_{n}<x_{n}$ for all $n \in \mathbb{N}$. Therefore, the sequence is monotonic (decreasing).
(b) As the sequence is monotonic and bounded, it is convergent. Let $L=\lim _{n \rightarrow \infty} x_{n}$. Then $\sin L=\sin \left(\lim _{n \rightarrow \infty} x_{n}\right)=\lim _{n \rightarrow \infty} \sin x_{n}($ since sin is continuous $)=\lim _{n \rightarrow \infty} x_{n+1}=L$, implying $L=0$.

Problem 4.

(a) (20 points) Show that if $x>0$ is an irrational number, then $\lim _{n \rightarrow \infty} \frac{\lfloor x n\rfloor}{n}=x$, where $\lfloor a\rfloor$ represents the largest integer $\leq a$.
(b) (20 points) Let $f:(0, \infty) \rightarrow \mathbb{R}$ be an increasing function, i.e. $f(x)<f(y)$ whenever $x<y$. Show that the limit $\lim _{n \rightarrow \infty} f\left(\frac{\lfloor x n\rfloor}{n}\right)$ exists.

Solution. (a) For all $\epsilon>0$, by Archimedean principle, there exists $N \in \mathbb{N}$ such that $N>\frac{1}{\epsilon}$. For all n with $n \geq N,\left|\frac{\lfloor x n\rfloor}{n}-x\right|=\frac{x n-\lfloor x n\rfloor}{n}<\frac{1}{n} \leq \frac{1}{N}<\epsilon$.
(b) $\frac{\lfloor x n\rfloor}{n} \leq \frac{x n}{n}=x$, but the equality case cannot hold since x is irrational, so $\frac{\lfloor x n\rfloor}{n}<x$ for all $n \in \mathbb{N}$. Hence, $\left(\frac{\lfloor x n\rfloor}{n}\right)_{n \geq 1}$ is converging to x from the left. As f is an increasing function, the left limit $\lim _{y \rightarrow y_{0}^{-}} f(y)$ exists for all $y_{0} \in \mathbb{R}$. Taking $y_{0}=x$, we have $\lim _{n \rightarrow \infty} f\left(\frac{\lfloor x n\rfloor}{n}\right)$ exists.

