
MA 1A (SECTION 1) MID-TERM SOLUTIONS

Problem 1. (40 points)

Let x 6= 1. For an integer n ≥ 1 show that
n∏
k=1

(1 + x2
k−1

) = 1−x2n

1−x .

Solution. When n = 1, L.H.S. = 1 + x2
1−1

= 1 + x, and R.H.S. = 1−x21

1−x = 1−x2
1−x = 1 + x =

L.H.S. since x 6= 1.

Assume that for some r ∈ N,
r∏

k=1

(1+x2
k−1

) = 1−x2r

1−x . When n = r+1, L.H.S. =
r+1∏
k=1

(1+x2
k−1

) =

(1 + x2
r+1−1

)
r∏

k=1

(1 + x2
k−1

) = (1 + x2
r
)1−x

2r

1−x = 12−(x2r )2
1−x = 1−x2r+1

1−x = R.H.S. Therefore, by

induction,
n∏
k=1

(1 + x2
k−1

) = 1−x2n

1−x for all n ∈ N.

Problem 2.
(a) (20 points) Show that the limit of a convergent sequence of integers is an integer.
(b) (10 points) Let (xn)n≥1 be a convergent sequence of rational numbers. Let qn be the
denominator of xn (when written in lowest terms). If the sequence (qn)n≥1 is a bounded
sequence of integers, show that there exists an integer N such that N · xn is an integer for
all n ≥ 1.
(c) (10 points) Under the assumptions of part (b) deduce that lim

n→∞
xn is a rational number.

Solution. (a) Let (an)n≥1 be a convergent sequence of integers. Assume contrary, let the
limit be L ∈ R\Z. Then for all ε > 0, there exists N ∈ N such that for all n with n ≥ N ,
|an−L| < ε. In particular, we can pick ε = min{dLe−L,L−bLc} > 0. However, as an ∈ Z,
by the definition of ceiling and floor function, |an−L| ≥ dLe −L or |an−L| ≥ L− bLc, i.e.
|an − L| ≥ ε for all n ∈ N, contradiction. Therefore, L ∈ Z.
(b) Let a bound of (qn)n≥1 be M ∈ N, i.e. −M ≤ qn ≤ M for all n ∈ N. If N = M !, qn | N
for all n ∈ N, and hence, N · xn is an integer for all n ∈ N.
(c) Let L = lim

n→∞
xn. Then NL = lim

n→∞
N ·xn, where N is the same as part (b). As (N ·xn)n≥1

is a convergent sequence of integers, by part (a), NL is an integer. Therefore, L = NL
N

is a
fraction of integers with N 6= 0, i.e. rational.

Problem 3.
Let x ∈ (0, π

2
). Consider the sequence xn = sin(sin(· · · sin︸ ︷︷ ︸

n times

x)).

(a) (20 points) Is the sequence (xn) monotonic?
(b) (20 points) Does it converge? If yes, find its limit; if not, show why that is the case.
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Solution. (a) For all x ∈ (0, π
2
), 0 < sinx < x < π

2
.

When n = 1, x1 = sinx ∈ (0, π
2
). Assume that for some k ∈ N, xk ∈ (0, π

2
). When

n = k + 1, xk+1 = sinxk ∈ (0, π
2
). By induction, xn ∈ (0, π

2
) for all n ∈ N. As a result,

xn+1 = sinxn < xn for all n ∈ N. Therefore, the sequence is monotonic (decreasing).
(b) As the sequence is monotonic and bounded, it is convergent. Let L = lim

n→∞
xn. Then

sinL = sin
(

lim
n→∞

xn

)
= lim

n→∞
sinxn (since sin is continuous) = lim

n→∞
xn+1 = L, implying L = 0.

Problem 4.
(a) (20 points) Show that if x > 0 is an irrational number, then lim

n→∞
bxnc
n

= x, where bac
represents the largest integer ≤ a.
(b) (20 points) Let f : (0,∞) → R be an increasing function, i.e. f(x) < f(y) whenever

x < y. Show that the limit lim
n→∞

f( bxnc
n

) exists.

Solution. (a) For all ε > 0, by Archimedean principle, there exists N ∈ N such that N > 1
ε
.

For all n with n ≥ N ,
∣∣∣ bxncn − x∣∣∣ = xn−bxnc

n
< 1

n
≤ 1

N
< ε.

(b) bxnc
n
≤ xn

n
= x, but the equality case cannot hold since x is irrational, so bxnc

n
< x for all

n ∈ N. Hence,
(
bxnc
n

)
n≥1

is converging to x from the left. As f is an increasing function,

the left limit lim
y→y−0

f(y) exists for all y0 ∈ R. Taking y0 = x, we have lim
n→∞

f( bxnc
n

) exists.
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