MA 1A (SECTION 1) MID-TERM SOLUTIONS

Problem 1. (40 points)

Let $x \neq 1$. For an integer $n \ge 1$ show that $\prod_{k=1}^{n} (1 + x^{2^{k-1}}) = \frac{1 - x^{2^n}}{1 - x}$.

Solution. When n = 1, L.H.S. $= 1 + x^{2^{1-1}} = 1 + x$, and R.H.S. $= \frac{1 - x^{2^1}}{1 - x} = \frac{1 - x^2}{1 - x} = 1 + x = 1 + x$ Assume that for some $r \in \mathbb{N}$, $\prod_{k=1}^{r} (1+x^{2^{k-1}}) = \frac{1-x^{2^r}}{1-x}$. When n = r+1, L.H.S. $= \prod_{k=1}^{r+1} (1+x^{2^{k-1}}) = (1+x^{2^{r+1-1}}) \prod_{k=1}^{r} (1+x^{2^{k-1}}) = (1+x^{2^r}) \frac{1-x^{2^r}}{1-x} = \frac{1^2-(x^{2^r})^2}{1-x} = \frac{1-x^{2^{r+1}}}{1-x} = \mathbb{R}$.H.S. Therefore, by induction, $\prod_{k=1}^{n} (1+x^{2^{k-1}}) = \frac{1-x^{2^n}}{1-x}$ for all $n \in \mathbb{N}$. L.H.S. since $x \neq 1$.

Problem 2.

(a) (20 points) Show that the limit of a convergent sequence of integers is an integer.

(b) (10 points) Let $(x_n)_{n\geq 1}$ be a convergent sequence of rational numbers. Let q_n be the denominator of x_n (when written in lowest terms). If the sequence $(q_n)_{n\geq 1}$ is a bounded sequence of integers, show that there exists an integer N such that $N \cdot x_n$ is an integer for all $n \geq 1$.

(c) (10 points) Under the assumptions of part (b) deduce that $\lim_{n\to\infty} x_n$ is a rational number.

Solution. (a) Let $(a_n)_{n>1}$ be a convergent sequence of integers. Assume contrary, let the limit be $L \in \mathbb{R} \setminus \mathbb{Z}$. Then for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all n with $n \ge N$, $|a_n - L| < \epsilon$. In particular, we can pick $\epsilon = \min\{\lfloor L \rfloor - L, L - \lfloor L \rfloor\} > 0$. However, as $a_n \in \mathbb{Z}$, by the definition of ceiling and floor function, $|a_n - L| \ge \lceil L \rceil - L$ or $|a_n - L| \ge L - \lfloor L \rfloor$, i.e. $|a_n - L| \ge \epsilon$ for all $n \in \mathbb{N}$, contradiction. Therefore, $L \in \mathbb{Z}$.

(b) Let a bound of $(q_n)_{n\geq 1}$ be $M \in \mathbb{N}$, i.e. $-M \leq q_n \leq M$ for all $n \in \mathbb{N}$. If N = M!, $q_n \mid N$ for all $n \in \mathbb{N}$, and hence, $N \cdot x_n$ is an integer for all $n \in \mathbb{N}$.

(c) Let $L = \lim_{n \to \infty} x_n$. Then $NL = \lim_{n \to \infty} N \cdot x_n$, where N is the same as part (b). As $(N \cdot x_n)_{n \ge 1}$ is a convergent sequence of integers, by part (a), NL is an integer. Therefore, $L = \frac{NL}{N}$ is a fraction of integers with $N \neq 0$, i.e. rational.

Problem 3.

Let $x \in (0, \frac{\pi}{2})$. Consider the sequence $x_n = \underbrace{\sin(\sin(\cdots \sin x))}_{n \text{ times}}$.

- (a) (20 points) Is the sequence (x_n) monotonic?
- (b) (20 points) Does it converge? If yes, find its limit; if not, show why that is the case.

Date: Fall 2011.

Solution. (a) For all $x \in (0, \frac{\pi}{2}), 0 < \sin x < x < \frac{\pi}{2}$.

When n = 1, $x_1 = \sin x \in (0, \frac{\pi}{2})$. Assume that for some $k \in \mathbb{N}$, $x_k \in (0, \frac{\pi}{2})$. When n = k + 1, $x_{k+1} = \sin x_k \in (0, \frac{\pi}{2})$. By induction, $x_n \in (0, \frac{\pi}{2})$ for all $n \in \mathbb{N}$. As a result, $x_{n+1} = \sin x_n < x_n$ for all $n \in \mathbb{N}$. Therefore, the sequence is monotonic (decreasing). (b) As the sequence is monotonic and bounded, it is convergent. Let $L = \lim_{n \to \infty} x_n$. Then

 $\sin L = \sin \left(\lim_{n \to \infty} x_n \right) = \lim_{n \to \infty} \sin x_n \text{ (since sin is continuous)} = \lim_{n \to \infty} x_{n+1} = L, \text{ implying } L = 0.$

Problem 4.

(a) (20 points) Show that if x > 0 is an irrational number, then $\lim_{n \to \infty} \frac{|xn|}{n} = x$, where $\lfloor a \rfloor$ represents the largest integer $\leq a$.

(b) (20 points) Let $f : (0, \infty) \to \mathbb{R}$ be an increasing function, i.e. f(x) < f(y) whenever x < y. Show that the limit $\lim_{n \to \infty} f(\frac{\lfloor xn \rfloor}{n})$ exists.

Solution. (a) For all $\epsilon > 0$, by Archimedean principle, there exists $N \in \mathbb{N}$ such that $N > \frac{1}{\epsilon}$. For all n with $n \ge N$, $\left|\frac{\lfloor xn \rfloor}{n} - x\right| = \frac{xn - \lfloor xn \rfloor}{n} < \frac{1}{n} \le \frac{1}{N} < \epsilon$. (b) $\frac{\lfloor xn \rfloor}{n} \le \frac{xn}{n} = x$, but the equality case cannot hold since x is irrational, so $\frac{\lfloor xn \rfloor}{n} < x$ for all $n \in \mathbb{N}$. Hence, $\left(\frac{\lfloor xn \rfloor}{n}\right)_{n\ge 1}$ is converging to x from the left. As f is an increasing function,

the left limit $\lim_{y \to y_0^-} f(y)$ exists for all $y_0 \in \mathbb{R}$. Taking $y_0 = x$, we have $\lim_{n \to \infty} f(\frac{\lfloor xn \rfloor}{n})$ exists.