Math 1a Section 1

Homework 3

Due noon, Monday, October 24, 2011

All numbered exercises are from the textbook, Calculus by Apostol.

1. 10.4 .10
2. Let $\left(z_{n}\right)_{n \geq 1}$ be a sequence of complex numbers. Show that $\left(z_{n}\right)_{n \geq 1}$ converges with $\lim _{n \rightarrow \infty} z_{n}=0$ if and only if the sequence $\left(\left|z_{n}\right|\right)_{n \geq 1}$ converges with $\lim _{n \rightarrow \infty}\left|z_{n}\right|=0$.
3. Use the previous exercise and what you learned in class to show that if z is a complex number with $|z|<1$ then the sequence $\left(a_{n}\right)_{n \geq 1}$ where $a_{n}=1+z+z^{2}+\cdots+z^{n}$ converges, and compute its limit. [Hint: can you recall what we proved in class about the expression a_{n} ?]
4. Find the domain of definition of the function

$$
f(x)=\sqrt{x^{2}-2}+\frac{1}{x^{2}-4}
$$

taking the real variable x to the set of real numbers.
5. Show that the function $f:[2, \infty) \rightarrow[4, \infty)$ defined by $f(x)=x^{2}-4 x+8$ is bijective and compute its inverse $f^{-1}:[4, \infty) \rightarrow[2, \infty)$.

