MA 1A (SECTION 1) HW1 SOLUTIONS

Problem 1. (Apostol I 3.5 9)
There is no real number a such that $x \leq a$ for all real x.

Solution. Assume contrary, let $a \in \mathbb{R}$ be such that for all $x \in \mathbb{R}, x \leq a$. As \mathbb{R} is closed under addition, $a, 1 \in \mathbb{R} \Rightarrow a+1 \in \mathbb{R}$. Hence, by assumption, $a+1 \leq a$. By Thm I. $21,0<1$. By Axiom 4, $a=a+0$. By Thm I.18, $a=a+0<a+1$, contradiction.
(At most half credit if only applied Archimedean property (Thm I.30).)

Problem 2. (Apostol I 3.12 6)
If x and y are arbitrary real numbers, $x<y$, prove that there exists at least one rational number r satisfying $x<r<y$, and hence infinitely many. This property is often described by saying that the rational numbers are dense in the real-number system.

Solution. Assume contrary, there does not exists $r \in \mathbb{Q}$ such that $x<r<y$.
As $y-x>0$, there exists $M \in \mathbb{N}$ such that $M>\frac{1}{y-x}$ (Archimedean property (Thm I.30)). There also exists $a, b \in \mathbb{Z}$ such that $a<x M$ and $b>y M$, i.e. $\frac{a}{M}<x<y<\frac{b}{M}$.

Consider $\frac{a}{M}, \frac{a+1}{M}, \frac{a+2}{M}, \ldots, \frac{b-1}{M}, \frac{b}{M}$. As they are all in \mathbb{Q}, none of them is in the interval (x, y) by assumption. Then there exists $i \in \mathbb{Z}, a \leq i \leq b$, such that $\frac{a}{M} \leq \frac{i}{M} \leq x<y \leq \frac{i+1}{M} \leq \frac{b}{M}$. This implies that $\frac{1}{M}=\frac{i+1}{M}-\frac{i}{M} \geq y-x$, and hence $M \leq \frac{1}{y-x}$, contradicting with the definition of M.

Problem 3. (Apostol I 4.4 1(c))
Prove by induction that

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=(1+2+3+\cdots+n)^{2} .
$$

Solution. When $n=1$, L.H.S. $=1^{3}=1$, and R.H.S. $=1^{2}=1=$ L.H.S.
Assume that the equality holds for some $k \in \mathbb{N}$, i.e. $1^{3}+2^{3}+3^{3}+\cdots+k^{3}=(1+2+3+$ $\cdots+k)^{2}$. When $n=k+1$,

Date: Fall 2011.

$$
\begin{aligned}
\text { R.H.S. } & =(1+2+\cdots+k+(k+1))^{2} \\
& =(1+2+\cdots+k)^{2}+2(1+2+\cdots+k)(k+1)+(k+1)^{2} \\
& =1^{3}+2^{3}+\cdots+k^{3}+2(1+2+\cdots+k)(k+1)+(k+1)^{2} \text { (induction assumption) } \\
& =1^{3}+2^{3}+\cdots+k^{3}+2 \frac{k(k+1)}{2}(k+1)+(k+1)^{2} \text { (proved in recitation) } \\
& =1^{3}+2^{3}+\cdots+k^{3}+(k+1)^{3}=\text { L.H.S. }
\end{aligned}
$$

Hence, by induction, $1^{3}+2^{3}+3^{3}+\cdots+n^{3}=(1+2+3+\cdots+n)^{2}$ for all $n \in \mathbb{N}$.

Problem 4. (Apostol I 4.4 9)

Prove the following statement by induction: If a line of unit length is given, then a line of length \sqrt{n} can be constructed with straightedge and compass for each positive integer n.

Solution. When $n=1$, a line of length $\sqrt{1}=1$ can be constructed since it is given.
Assume that for some $k \in \mathbb{N}$, a line of length \sqrt{k} can be constructed with straightedge and compass. Note that by Pythagoras' Theorem, if the two vertical lines of a right-angled triangle are of lengths 1 and \sqrt{k}, then the hypothenuse is of length $\sqrt{k+1}$. Since we can construct perpendicular lines at any given point on a straight line with straightedge and compass (proved in recitation), a line of length $\sqrt{k+1}$ can be constructed.

Hence, by induction, a line of length \sqrt{n} can be constructed for all $n \in \mathbb{N}$.

Problem 5. (Apostol I 4.7 12)

Guess and prove a general rule which simplifies the sum

$$
\sum_{k=1}^{n} \frac{1}{k(k+1)}
$$

Solution. Claim: $\sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{n}{n+1}$ for all $n \in \mathbb{N}$.
When $n=1$, L.H.S. $=\frac{1}{1 \times 2}=\frac{1}{2}$, and R.H.S. $=\frac{1}{1+1}=\frac{1}{2}=$ L.H.S.
Assume that the equality holds for some $r \in \mathbb{N}$, i.e. $\sum_{k=1}^{r} \frac{1}{k(k+1)}=\frac{r}{r+1}$. When $n=r+1$, L.H.S. $=\sum_{k=1}^{r+1} \frac{1}{k(k+1)}=\sum_{k=1}^{r} \frac{1}{k(k+1)}+\frac{1}{(r+1)(r+2)}=\frac{r}{r+1}+\frac{1}{(r+1)(r+2)}$ (induction assumption) $=$ $\frac{r(r+2)+1}{(r+1)(r+2)}=\frac{r+1}{r+2}=$ R.H.S. Hence, by induction, $\sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{n}{n+1}$ for all $n \in \mathbb{N}$.

