MA 1A (SECTION 1) HW1 SOLUTIONS

Problem 1. (Apostol I 3.5 9)

There is no real number a such that $x \leq a$ for all real x.

Solution. Assume contrary, let $a \in \mathbb{R}$ be such that for all $x \in \mathbb{R}$, $x \leq a$. As \mathbb{R} is closed under addition, $a, 1 \in \mathbb{R} \Rightarrow a + 1 \in \mathbb{R}$. Hence, by assumption, $a + 1 \leq a$. By Thm I.21, 0 < 1. By Axiom 4, a = a + 0. By Thm I.18, a = a + 0 < a + 1, contradiction. (At most half credit if only applied Archimedean property (Thm I.30).)

Problem 2. (Apostol I 3.12 6)

If x and y are arbitrary real numbers, x < y, prove that there exists at least one rational number r satisfying x < r < y, and hence infinitely many. This property is often described by saying that the rational numbers are *dense* in the real-number system.

Solution. Assume contrary, there does not exists $r \in \mathbb{Q}$ such that x < r < y.

As y-x > 0, there exists $M \in \mathbb{N}$ such that $M > \frac{1}{y-x}$ (Archimedean property (Thm I.30)). There also exists $a, b \in \mathbb{Z}$ such that a < xM and b > yM, i.e. $\frac{a}{M} < x < y < \frac{b}{M}$.

Consider $\frac{a}{M}, \frac{a+1}{M}, \frac{a+2}{M}, \dots, \frac{b-1}{M}, \frac{b}{M}$. As they are all in \mathbb{Q} , none of them is in the interval (x, y) by assumption. Then there exists $i \in \mathbb{Z}$, $a \leq i \leq b$, such that $\frac{a}{M} \leq \frac{i}{M} \leq x < y \leq \frac{i+1}{M} \leq \frac{b}{M}$. This implies that $\frac{1}{M} = \frac{i+1}{M} - \frac{i}{M} \geq y - x$, and hence $M \leq \frac{1}{y-x}$, contradicting with the definition of M.

Problem 3. (Apostol I 4.4 1(c))

Prove by induction that

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = (1 + 2 + 3 + \dots + n)^{2}.$$

Solution. When n = 1, L.H.S. $= 1^3 = 1$, and R.H.S. $= 1^2 = 1 = L.H.S.$

Assume that the equality holds for some $k \in \mathbb{N}$, i.e. $1^3 + 2^3 + 3^3 + \cdots + k^3 = (1 + 2 + 3 + \cdots + k)^2$. When n = k + 1,

Date: Fall 2011.

R.H.S. =
$$(1 + 2 + \dots + k + (k + 1))^2$$

= $(1 + 2 + \dots + k)^2 + 2(1 + 2 + \dots + k)(k + 1) + (k + 1)^2$
= $1^3 + 2^3 + \dots + k^3 + 2(1 + 2 + \dots + k)(k + 1) + (k + 1)^2$ (induction assumption)
= $1^3 + 2^3 + \dots + k^3 + 2\frac{k(k + 1)}{2}(k + 1) + (k + 1)^2$ (proved in recitation)
= $1^3 + 2^3 + \dots + k^3 + (k + 1)^3$ = L.H.S.

Hence, by induction, $1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$ for all $n \in \mathbb{N}$.

Problem 4. (Apostol I 4.4 9)

Prove the following statement by induction: If a line of unit length is given, then a line of length \sqrt{n} can be constructed with straightedge and compass for each positive integer n.

Solution. When n = 1, a line of length $\sqrt{1} = 1$ can be constructed since it is given.

Assume that for some $k \in \mathbb{N}$, a line of length \sqrt{k} can be constructed with straightedge and compass. Note that by Pythagoras' Theorem, if the two vertical lines of a right-angled triangle are of lengths 1 and \sqrt{k} , then the hypothenuse is of length $\sqrt{k+1}$. Since we can construct perpendicular lines at any given point on a straight line with straightedge and compass (proved in recitation), a line of length $\sqrt{k+1}$ can be constructed.

Hence, by induction, a line of length \sqrt{n} can be constructed for all $n \in \mathbb{N}$.

Problem 5. (Apostol I 4.7 12)

Guess and prove a general rule which simplifies the sum

$$\sum_{k=1}^{n} \frac{1}{k(k+1)}.$$

Solution. Claim: $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$ for all $n \in \mathbb{N}$. When n = 1, L.H.S. $= \frac{1}{1 \times 2} = \frac{1}{2}$, and R.H.S. $= \frac{1}{1+1} = \frac{1}{2} = \text{L.H.S}$.

Assume that the equality holds for some $r \in \mathbb{N}$, i.e. $\sum_{k=1}^{r} \frac{1}{k(k+1)} = \frac{r}{r+1}$. When n = r+1, L.H.S. $=\sum_{k=1}^{r+1} \frac{1}{k(k+1)} = \sum_{k=1}^{r} \frac{1}{k(k+1)} + \frac{1}{(r+1)(r+2)} = \frac{r}{r+1} + \frac{1}{(r+1)(r+2)}$ (induction assumption) $= \frac{r(r+2)+1}{(r+1)(r+2)} = \frac{r+1}{r+2} = \text{R.H.S.}$ Hence, by induction, $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$ for all $n \in \mathbb{N}$.