MA 1A (SECTION 1) HW3 SOLUTIONS

Problem 1. (Apostol 10.4.10)
Consider the sequence $f(n)=n^{(-1)^{n}}$.
(a) Determine whether the sequence converges or diverges;
(b) find the limit if it is convergent.

Solution. Assume that $\lim _{n \rightarrow \infty} f(n)=L$ for some $L \in \mathbb{R}$. Pick $\epsilon=1$. For all $N \in \mathbb{N}$, pick $n=2 \max \left\{N,\left\lceil\frac{L+1}{2}\right\rceil\right\}$. Then $n \geq 2 N \geq N$, and $|f(n)-L|=\left|n^{(-1)^{n}}-L\right|=\left|n^{1}-L\right|$ (as n is even $) \geq n-L \geq 2\left(\frac{L+1}{2}\right)-L=1=\epsilon$, contradicting that $\lim _{n \rightarrow \infty} f(n)=L$. Therefore, $(f(n))_{n \geq 1}$ diverges.

Problem 2.

Let $\left(z_{n}\right)_{n \geq 1}$ be a sequence of complex numbers. Show that $\left(z_{n}\right)_{n \geq 1}$ converges with $\lim _{n \rightarrow \infty} z_{n}=$ 0 if and only if the sequence $\left(\left|z_{n}\right|\right)_{n \geq 1}$ converges with $\lim _{n \rightarrow \infty}\left|z_{n}\right|=0$.

Solution. For all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for all n with $n \geq N,\left|z_{n}-0\right|<\epsilon$ if and only if $\left|z_{n}\right|<\epsilon$, which is equivalent to $\left|\left|z_{n}\right|-0\right|<\epsilon$. Therefore, $\lim _{n \rightarrow \infty} z_{n}=0$ is equivalent to $\lim _{n \rightarrow \infty}\left|z_{n}\right|=0$.

Problem 3.

Use the previous exercise and what you learned in class to show that if z is a complex number with $|z|<1$ then the sequence $\left(a_{n}\right)_{n \geq 1}$ where $a_{n}=1+z+z^{2}+\cdots+z^{n}$ converges, and compute its limit. [Hint: can you recall what we proved in class about the expression a_{n} ?]

Solution. By the formula in class, $a_{n}=\frac{1-z^{n+1}}{1-z}$. As $|z|<1, \lim _{n \rightarrow \infty}|z|^{n+1}=0$. By Problem 2, we have $\lim _{n \rightarrow \infty} z^{n+1}=0$. Hence, $\lim _{n \rightarrow \infty} a_{n}=\frac{1-\lim _{n \rightarrow \infty} z^{n+1}}{1-z}=\frac{1}{1-z}$ as $z \neq 1$ by $|z|<1$.

Problem 4.

Find the domain of definition of the function $f(x)=\sqrt{x^{2}-2}+\frac{1}{x^{2}-4}$, taking the real variable x to the set of real numbers.

Solution. The domain where $\sqrt{x^{2}-2}$ is real is $(-\infty,-\sqrt{2}] \cup[\sqrt{2}, \infty)$ since $x^{2} \geq 2$. The domain where $\frac{1}{x^{2}-4}$ is real is $\mathbb{R} \backslash\{-2,2\}$ since $x^{2} \neq 4$. Hence, the domain where $f(x)$ is real is $(-\infty,-\sqrt{2}] \cup[\sqrt{2}, \infty) \backslash\{-2,2\}$.

Date: Fall 2011.

Problem 5.

Show that the function $f:[2, \infty) \rightarrow[4, \infty)$ defined by $f(x)=x^{2}-4 x+8$ is bijective and compute its inverse $f^{-1}:[4, \infty) \rightarrow[2, \infty)$.

Solution. Let $g(y)=2+\sqrt{y-4}$ with the domain $[4, \infty)$. Then for all $y \geq 4, g(y) \geq$ $2+\sqrt{4-4}=2$, so $g:[4, \infty) \rightarrow[2, \infty)$.

For all $x \in[2, \infty), g(f(x))=2+\sqrt{x^{2}-4 x+8-4}=2+|x-2|=x$ since $x \geq 2$. On the other hand, for all $y \in[4, \infty), f(g(y))=(2+\sqrt{y-4})^{2}-4(2+\sqrt{y-4})+8=$ $4+y-4+4 \sqrt{y-4}-8-4 \sqrt{y-4}+8=y$. Therefore, we have $f^{-1}(y)=g(y)=2+\sqrt{y-4}$ and f is bijective.

