MA 1A (SECTION 1) HW4 SOLUTIONS

Problem 1. (Apostol 3.8.18)
Calculate the limit $\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{x^{2}}$.
Solution. $\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{x^{2}}=\lim _{x \rightarrow 0} \frac{1-\left(1-2 \sin ^{2} x\right)}{x^{2}}=2 \lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \lim _{x \rightarrow 0} \frac{\sin x}{x}$ (by Thm 3.1(iii) since $\lim _{x \rightarrow 0} 2$ and $\lim _{x \rightarrow 0} \frac{\sin x}{x}$ exist) $=2 \cdot 1 \cdot 1=2$.

Problem 2. (Apostol 4.6.38)
Given the formula $1+x+x^{2}+\cdots+x^{n}=\frac{x^{n+1}-1}{x-1}$ (valid if $x \neq 1$), determine, by differentiation, formulae for the following sums:
(a) $1+2 x+3 x^{2}+\cdots+n x^{n-1}$,
(b) $1^{2} x+2^{2} x^{2}+3^{2} x^{3}+\cdots+n^{2} x^{n}$.

Solution. (a) $1+2 x+3 x^{2}+\cdots+n x^{n-1}=\frac{d}{d x}\left(1+x+x^{2}+\cdots+x^{n}\right)=\frac{d}{d x} \frac{x^{n+1}-1}{x-1}=$ $\frac{(x-1)(n+1) x^{n}-\left(x^{n+1}-1\right) 1}{(x-1)^{2}}=\frac{n x^{n+1}-(n+1) x^{n}+1}{(x-1)^{2}}$.
(b) $1^{2} x+2^{2} x^{2}+3^{2} x^{3}+\cdots+n^{2} x^{n}=x\left(1^{2}+2^{2} x+3^{2} x^{2}+\cdots+n^{2} x^{n-1}\right)=x \frac{d}{d x}\left(x+2 x^{2}+\right.$ $\left.3 x^{3}+\cdots+n x^{n}\right)=x \frac{d}{d x}\left(x\left(1+2 x+3 x^{2}+\cdots+n x^{n-1}\right)\right)=x \frac{d}{d x} \frac{n x^{n+2}-(n+1) x^{n+1}+x}{(x-1)^{2}}($ by part $(\mathrm{a}))=$ $x \frac{(x-1)^{2}\left(n(n+2) x^{n+1}-(n+1)^{2} x^{n}+1\right)-2(x-1)\left(n x^{n+2}-(n+1) x^{n+1}+x\right)}{(x-1)^{4}}=\frac{n^{2} x^{n+3}-\left(2 n^{2}+2 n-1\right) x^{n+2}+(n+1) x^{n+1}-x^{2}-x}{(x-1)^{3}}$.

Problem 3. (Apostol 4.9.15)
Given that the derivative $f^{\prime}(a)$ exists. State which of the following statements are true and which are false. Give a reason for your decision in each case.
(a) $f^{\prime}(a)=\lim _{h \rightarrow a} \frac{f(h)-f(a)}{h-a}$.
(b) $f^{\prime}(a)=\lim _{t \rightarrow 0} \frac{f(a+2 t)-f(a)}{t}$.
(c) $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a)-f(a-h)}{h}$.
(d) $f^{\prime}(a)=\lim _{t \rightarrow 0} \frac{f(a+2 t)-f(a+t)}{2 t}$.

Solution. (a) True. $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$. Let $\ell=a+h$, so $h=\ell-a$, and $h \rightarrow 0$ is equivalent to $\ell-a \rightarrow 0$, or $\ell \rightarrow a$. Then $f^{\prime}(a)=\lim _{\ell \rightarrow a} \frac{f(\ell)-f(a)}{\ell-a}=\lim _{h \rightarrow a} \frac{f(h)-f(a)}{h-a}$ since h and ℓ are dummy variables.
(b) False. $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$. Let $h=2 t$, so $h \rightarrow 0$ is equivalent to $2 t \rightarrow 0$, or $t \rightarrow 0$. Then $f^{\prime}(a)=\lim _{t \rightarrow 0} \frac{f(a+2 t)-f(a)}{2 t}=\frac{1}{2} \lim _{t \rightarrow 0} \frac{f(a+2 t)-f(a)}{t} \neq \lim _{t \rightarrow 0} \frac{f(a+2 t)-f(a)}{t}$ unless $f^{\prime}(a)=0$.
(c) True. $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$. Let $h=-\ell$, so $h \rightarrow 0$ is equivalent to $-\ell \rightarrow 0$, or $\ell \rightarrow 0$.

Then $f^{\prime}(a)=\lim _{\ell \rightarrow 0} \frac{f(a-\ell)-f(a)}{-\ell}=\lim _{\ell \rightarrow 0} \frac{f(a)-f(a-\ell)}{\ell}=\lim _{h \rightarrow 0} \frac{f(a)-f(a-h)}{h}$ since h and ℓ are dummy variables.
(d) False $f^{\prime}(a)=2 f^{\prime}(a)-f^{\prime}(a)=2 \cdot \frac{1}{2} \lim _{t \rightarrow 0} \frac{f(a+2 t)-f(a)}{t}-\lim _{t \rightarrow 0} \frac{f(a+t)-f(a)}{t}$ (by part (b)) $=$ $\lim _{t \rightarrow 0} \frac{f(a+2 t)-f(a+t)}{t} \neq \lim _{t \rightarrow 0} \frac{f(a+2 t)-f(a+t)}{2 t}$ unless $f^{\prime}(a)=0$.

Problem 4. (Apostol 4.12.14)
Determine the derivative $f^{\prime}(x)$, where x is restricted to those values for which $f(x)=$ $\sqrt{x+\sqrt{x+\sqrt{x}}}$ is meaningful.

Solution. $\quad f^{\prime}(x)=\frac{\frac{d}{d x}(x+\sqrt{x+\sqrt{x}})}{2 \sqrt{x+\sqrt{x+\sqrt{x}}}}=\frac{1+\frac{\frac{d}{d x}(x+\sqrt{x})}{2 \sqrt{x+\sqrt{x}}}}{2 \sqrt{x+\sqrt{x+\sqrt{x}}}}=\frac{1+\frac{1+\frac{1}{2 \sqrt{x}}}{2 \sqrt{x+\sqrt{x}}}}{2 \sqrt{x+\sqrt{x+\sqrt{x}}}}=\frac{2 \sqrt{x+\sqrt{x}}+1+\frac{1}{2 \sqrt{x}}}{4 \sqrt{x+\sqrt{x}} \sqrt{x+\sqrt{x+\sqrt{x}}}}=$ $\frac{4 \sqrt{x} \sqrt{x+\sqrt{x}}+2 \sqrt{x}+1}{8 \sqrt{x} \sqrt{x+\sqrt{x}} \sqrt{x+\sqrt{x+\sqrt{x}}}}$.

Problem 5. (Apostol 4.12.30)
The equation $x^{3}+y^{3}=1$ defines y as one or more functions of x.
(a) Assuming the derivative y^{\prime} exists, and without attempting to solve for y, show that y^{\prime} satisfies the equation $x^{2}+y^{2} y^{\prime}=0$.
(b) Assuming the second derivative $y^{\prime \prime}$ exists, show that $y^{\prime \prime}=-2 x y^{-5}$ whenever $y \neq 0$.

Solution. (a) $0=\frac{d}{d x} 1=\frac{d}{d x}\left(x^{3}+y^{3}\right)=3 x^{2}+3 y^{2} \frac{d y}{d x}$, so $x^{2}+y^{2} y^{\prime}=0$ since $y^{\prime}=\frac{d y}{d x}$ by definition.
(b) Note that $y^{\prime}=-\frac{x^{2}}{y^{2}}$ if $y \neq 0$, so $y^{\prime \prime}=-\frac{d}{d x} \frac{x^{2}}{y^{2}}=-\frac{y^{2} \cdot 2 x-x^{2} \cdot 2 y y^{\prime}}{y^{4}}=-\frac{2 x y^{2}-2 x^{2} y\left(-\frac{x^{2}}{y^{2}}\right)}{y^{4}}=$ $-\frac{2 x y^{3}+2 x^{4}}{y^{5}}=-2 x y^{-5}\left(x^{3}+y^{3}\right)=-2 x y^{-5}$.

